M1 General Physics

Particles

Tensors, field strength and Lorentz transform of electromagnetic fields

1 Symmetric and antisymmetric tensors

1.1 Symmetrization, antisymmetrization and covariance

Consider a quadridimensional 2-tensor $M^{\mu \nu}$.

1. Provide a separation of $M^{\mu \nu}$ as a sum of two symmetric (S) and antisymmetric (A) tensors:

$$
\begin{equation*}
M^{\mu \nu}=S^{\mu \nu}+A^{\mu \nu} \tag{1}
\end{equation*}
$$

Solution

$$
M^{\mu \nu}=\frac{1}{2}\left(M^{\mu \nu}+M^{\nu \mu}\right)+\frac{1}{2}\left(M^{\mu \nu}-M^{\nu \mu}\right)=S^{\mu \nu}+A^{\mu \nu} .
$$

with

$$
S^{\mu \nu}=\frac{1}{2}\left(M^{\mu \nu}+M^{\nu \mu}\right)
$$

and

$$
A^{\mu \nu}=\frac{1}{2}\left(M^{\mu \nu}-M^{\nu \mu}\right) .
$$

2. Recall the way $M^{\mu \nu}$ transform under a arbitrary Lorentz transformation Λ, encoded through its matrix elements $\Lambda^{\rho}{ }_{\sigma}$.

Under a Lorentz transformation Λ, any tensor $M^{\mu \nu}$ transforms according to

$$
M^{\prime \mu \nu}=\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} M^{\mu^{\prime} \nu^{\prime}} .
$$

3. Show that the decomposition (1) is covariant under Lorentz transformations.
\qquad

Under a Lorentz transformation Λ, any tensor $M^{\mu \nu}$ transforms according to

$$
M^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda_{\nu^{\prime}}^{\nu} M^{\mu^{\prime} \nu^{\prime}} .
$$

On the one hand

$$
S^{\prime \mu \nu}=\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} S^{\mu^{\prime} \nu^{\prime}}
$$

and thus

$$
S^{\prime \nu \mu}=\Lambda_{\mu^{\prime}}^{\nu} \Lambda_{\nu^{\prime}}^{\mu} S^{\mu^{\prime} \nu^{\prime}}=\Lambda_{\nu^{\prime}}^{\nu} \Lambda_{\mu^{\prime}}^{\mu} S^{\nu^{\prime} \mu^{\prime}}=\Lambda_{\nu^{\prime}}^{\nu} \Lambda_{\mu^{\prime}}^{\mu} S^{\mu^{\prime} \nu^{\prime}}=\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} S^{\mu^{\prime} \nu^{\prime}}=S^{\prime \mu \nu}
$$

where the second equality holds because $\mu^{\prime}, \nu^{\prime}$ are dummy summation indexes, and the third one relies on the fact that S is symmetric. The last equality is just a simple reshuffling. On the other hand

$$
A^{\prime \mu \nu}=\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} A^{\mu^{\prime} \nu^{\prime}}
$$

and thus

$$
A^{\prime \nu \mu}=\Lambda_{\mu^{\prime}}^{\nu} \Lambda_{\nu^{\prime}}^{\mu} A^{\mu^{\prime} \nu^{\prime}}=\Lambda_{\nu^{\prime}}^{\nu} \Lambda_{\mu^{\prime}}^{\mu} A^{\nu^{\prime} \mu^{\prime}}=-\Lambda_{\nu^{\prime}}^{\nu} \Lambda_{\mu^{\prime}}^{\mu} A^{\mu^{\prime} \nu^{\prime}}=-\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} A^{\mu^{\prime} \nu^{\prime}}=-A^{\prime \mu \nu}
$$

4. Write the Lorentz transformation of $M^{\mu \nu}$ in a way which makes this separation explicit.

Solution

Using the fact that μ^{\prime} and ν^{\prime} are dummy variables, M can be rewritten as

$$
\left.\begin{array}{rl}
M^{\prime} \mu \nu & =\frac{1}{2}\left(\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu}+\Lambda_{\nu^{\prime}}^{\mu} \Lambda_{\mu^{\prime}}^{\nu}\right) \frac{1}{2}\left(M^{\prime} \mu^{\prime} \nu^{\prime}\right. \\
& \left.+M^{\prime^{\prime} \mu^{\prime}}\right) \\
& +\frac{1}{2}\left(\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu}-\Lambda_{\mu^{\prime}}^{\nu} \Lambda_{\nu^{\prime}}^{\mu}\right) \frac{1}{2}\left(M^{\prime} \mu^{\prime} \nu^{\prime}\right.
\end{array} M^{\prime \nu^{\prime} \mu^{\prime}}\right) ~ \$
$$

which explicitly shows that $S^{\mu^{\prime} \nu^{\prime}}$ (first line) transforms through the contraction of the symmetric tensor $\frac{1}{2}\left(\Lambda_{\mu^{\prime}}^{\mu} \Lambda^{\nu}{ }_{\nu^{\prime}}+\Lambda^{\mu}{ }_{\nu^{\prime}} \Lambda^{\nu}{ }_{\mu^{\prime}}\right)$ while $A^{\mu^{\prime} \nu^{\prime}}$ (second line) transforms through the contraction of the antisymmetric tensor $\frac{1}{2}\left(\Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu}-\Lambda_{\mu^{\prime}} \Lambda^{\mu}{ }_{\nu^{\prime}}\right)$.

1.2 Transformation under boosts

We now consider a Lorentz boost of a frame F to a frame F^{\prime} along the x axis, encoded by $\beta=v / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$.
5. Recall the explicit expression of Λ.

$$
\left\{\begin{array}{l}
x^{0 \prime}=\gamma x^{0}-\gamma \beta x^{1} \\
x^{1 \prime}=-\gamma \beta x^{0}+\gamma x^{1}
\end{array}\right.
$$

and thus

$$
\Lambda=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

6. We focus on the case of a symmetric tensor $S^{\mu \nu}$.

Write the Lorentz transformation of the various components of S under the above boost.
\qquad Solution

From $S^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda_{\nu^{\prime}}^{\nu} S^{\mu^{\prime} \nu^{\prime}}$ we have, using the fact that S is symmetric,
while S^{22}, S^{23}, S^{33} are invariant. Explicitly, we thus get

$$
\left\{\begin{array}{l}
S^{\prime 00}=\gamma^{2}\left(S^{00}-2 \beta S^{01}+\beta^{2} S^{11}\right) \\
S^{\prime 01}=\gamma^{2}\left(-\beta S^{00}+\left(1+\beta^{2}\right) S^{01}-\beta S^{11}\right) \\
S^{\prime 02}=\gamma\left(S^{02}-\beta S^{12}\right) \\
S^{\prime 03}=\gamma\left(S^{03}-\beta S^{13}\right) \\
S^{\prime 11}=\gamma^{2}\left(\beta^{2} S^{00}-2 \beta S^{01}+S^{11}\right) \\
S^{\prime 12}=\gamma\left(-\beta S^{02}+S^{12}\right) \\
S^{\prime 13}=\gamma\left(-\beta S^{03}+S^{13}\right)
\end{array}\right.
$$

7. We focus on the case of an antisymmetric tensor $A^{\mu \nu}$.
a. What can be said about $A^{00}, A^{11}, A^{22}, A^{33}$ and their transformations?
\qquad
$A^{\mu \nu}$ is antisymmetric, therefore $A^{00}=A^{11}=A^{22}=A^{33}=0$, and this remains valid in any frame obtained through arbitrary Lorentz transformations, as we have shown above.
b. How does A^{23} transforms?

Solution

\qquad
Since x^{2} and x^{3} are invariant under the boost (2), A^{23} is invariant.
c. Compare the transformation of A^{12}, A^{13} and A^{02}, A^{03} with the transformation of x^{1} and x^{0}. Deduce the transformation of these components.
\qquad
The components A^{02} and A^{03} transform as x^{0} while A^{12} and A^{13} transform as x^{1}. Thus,

$$
\left\{\begin{array}{l}
A^{\prime 02}=\gamma A^{02}-\gamma \beta A^{12} \\
A^{\prime 12}=-\gamma \beta A^{02}+\gamma A^{12}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
A^{\prime 03}=\gamma A^{03}-\gamma \beta A^{13} \\
A^{\prime 13}=-\gamma \beta A^{03}+\gamma A^{13}
\end{array}\right.
$$

d. Show that A^{01} is invariant under these boosts.
A^{01} is invariant since

$$
A^{\prime 01}=\Lambda_{0}^{0} \Lambda_{1}^{1} A^{01}+\Lambda_{1}^{0} \Lambda_{0}^{1} A^{10}=\left(\gamma^{2}-\gamma^{2} \beta^{2}\right) A^{01}=A^{01}
$$

because $\gamma^{2}\left(1-\beta^{2}\right)=1$.

2 Lorentz transformations of electromagnetic fields

We now apply the previous results to the field strength

$$
F^{\mu \nu}=\left(\begin{array}{cccr}
0 & -E^{1} & -E^{2} & -E^{3} \\
E^{1} & 0 & -B^{3} & B^{2} \\
E^{2} & B^{3} & 0 & -B^{1} \\
E^{3} & -B^{2} & B^{1} & 0
\end{array}\right)
$$

where \vec{E} and \vec{B} are the electric and magnetic fields. We use a system of units such that $c=1$.
8. Show that under the considered boost along x, these fields transform as

$$
\begin{align*}
& E^{\prime 1}=E^{1} \tag{2}\\
& E^{\prime 2}=\gamma\left(E^{2}-\beta B^{3}\right) \tag{3}\\
& E^{\prime 3}=\gamma\left(E^{3}+\beta B^{2}\right) \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& B^{\prime 1}=B^{1} \tag{5}\\
& B^{\prime 2}=\gamma\left(B^{2}+\beta E^{3}\right) \tag{6}\\
& B^{\prime 3}=\gamma\left(B^{3}-\beta E^{2}\right) \tag{7}
\end{align*}
$$

\qquad
This is more or less straightforward from the previous questions devoted to the way an antisymmetric tensor gets boosted.
9. Consider an arbitrary boost along the direction $\vec{n}\left(\vec{n}^{2}=1\right)$, i.e. with a velocity $\vec{v}=\beta \vec{n}$.

Show that under such a boost,

$$
\begin{align*}
\vec{E}^{\prime} & =(\vec{E} \cdot \vec{n}) \vec{n}+\gamma[\vec{E}-(\vec{E} \cdot \vec{n}) \vec{n}]+\gamma \vec{v} \wedge \vec{B} \tag{8}\\
\vec{B}^{\prime} & =(\vec{B} \cdot \vec{n}) \vec{n}+\gamma[\vec{B}-(\vec{B} \cdot \vec{n}) \vec{n}]-\gamma \vec{v} \wedge \vec{E} \tag{9}
\end{align*}
$$

The easiest way is to write the results (2-7) in an intrinsic form:
First, the components along \vec{n} of both \vec{E} and \vec{B} are invariants, which reads $\left.\vec{E}^{\prime} \cdot \vec{n}\right) \vec{n}=(\vec{E} \cdot \vec{n}) \vec{n}$ and $\left(\vec{B}^{\prime} \cdot \vec{n}\right) \vec{n}=(\vec{B} \cdot \vec{n}) \vec{n}$.
Second, extracting these components through $\vec{E}-(\vec{E} \cdot \vec{n}) \vec{n}$ and $\vec{B}-(\vec{B} \cdot \vec{n}) \vec{n}$, the remaining components are boosted by a factor γ according to $(3,4)$ and $(6,7)$ respectively.

Third, the $\gamma \beta$ terms in $(3,4)$ and $(6,7)$ respectively $\operatorname{read} \gamma \beta \vec{n} \wedge \vec{B}$ and $-\gamma \beta \vec{n} \wedge \vec{E}$ in the case $\vec{n}=\vec{u}_{x}$. The fact that the boost was along the x direction plays no role in this result, so that we can promote it for arbitrary \vec{n}.
Combining this three kinds of contributions leads to the result.
10. Show that this can be rewritten in the form

$$
\begin{align*}
\vec{E}^{\prime} & =(\vec{E} \cdot \vec{n}) \vec{n}+\gamma[\vec{n} \wedge(\vec{E} \wedge \vec{n})+\vec{v} \wedge \vec{B}] \tag{10}\\
\vec{B}^{\prime} & =(\vec{B} \cdot \vec{n}) \vec{n}+\gamma[\vec{n} \wedge(\vec{B} \wedge \vec{n})-\vec{v} \wedge \vec{E}] \tag{11}
\end{align*}
$$

Hint: use $\vec{a} \wedge(\vec{b} \wedge \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.
\longrightarrow Solution
The double vector product identity reads $\vec{n} \wedge(\vec{E} \wedge \vec{n})=\vec{E}-(\vec{n} \cdot \vec{E}) \vec{n}$, which immediately provides the result.
11. In the non-relativistic limit, simplify the transformations (8) and (9), keeping linear terms in β.

Solution

\qquad
The boosted fields read in the non-relativistic limit

$$
\begin{align*}
\vec{E}^{\prime} & =\vec{E}+\vec{v} \wedge \vec{B} \tag{12}\\
\vec{B}^{\prime} & =\vec{B}-\vec{v} \wedge \vec{E} \tag{13}
\end{align*}
$$

