M1 General Physics

Particles

Tensors, field strength and Lorentz transform of electromagnetic fields

1 Symmetric and antisymmetric tensors

1.1 Symmetrization, antisymmetrization and covariance

Consider a quadridimensional 2-tensor $M^{\mu\nu}$.

1. Provide a separation of $M^{\mu\nu}$ as a sum of two symmetric (S) and antisymmetric (A) tensors:

$$M^{\mu\nu} = S^{\mu\nu} + A^{\mu\nu} \,. \tag{1}$$

2. Recall the way $M^{\mu\nu}$ transform under a arbitrary Lorentz transformation Λ , encoded through its matrix elements Λ^{ρ}_{σ} .

3. Show that the decomposition (1) is covariant under Lorentz transformations.

4. Write the Lorentz transformation of $M^{\mu\nu}$ in a way which makes this separation explicit.

1.2 Transformation under boosts

We now consider a Lorentz boost of a frame F to a frame F' along the x axis, encoded by $\beta = v/c$ and $\gamma = 1/\sqrt{1-\beta^2}$.

- 5. Recall the explicit expression of Λ .
- 6. We focus on the case of a symmetric tensor $S^{\mu\nu}$.

Write the Lorentz transformation of the various components of S under the above boost.

7. We focus on the case of an antisymmetric tensor $A^{\mu\nu}$.

- a. What can be said about $A^{00}, A^{11}, A^{22}, A^{33}$ and their transformations?
- b. How does A^{23} transforms?

c. Compare the transformation of A^{12} , A^{13} and A^{02} , A^{03} with the transformation of x^1 and x^0 . Deduce the transformation of these components.

d. Show that A^{01} is invariant under these boosts.

2 Lorentz transformations of electromagnetic fields

We now apply the previous results to the field strength

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E^1 & -E^2 & -E^3 \\ E^1 & 0 & -B^3 & B^2 \\ E^2 & B^3 & 0 & -B^1 \\ E^3 & -B^2 & B^1 & 0 \end{pmatrix},$$

where \vec{E} and \vec{B} are the electric and magnetic fields. We use a system of units such that c = 1.

8. Show that under the considered boost along x, these fields transform as

$$E'^1 = E^1,$$
 (2)

$$E^{'2} = \gamma (E^2 - \beta B^3), \qquad (3)$$

$$E^{\prime 3} = \gamma (E^3 + \beta B^2) \tag{4}$$

and

$$B'^{1} = B^{1}, (5)$$

$$B^{'2} = \gamma (B^2 + \beta E^3), \qquad (6)$$

$$B'^{3} = \gamma (B^{3} - \beta E^{2}).$$
(7)

9. Consider an arbitrary boost along the direction \vec{n} ($\vec{n}^2 = 1$), i.e. with a velocity $\vec{v} = \beta \vec{n}$. Show that under such a boost,

$$\vec{E}' = (\vec{E} \cdot \vec{n})\vec{n} + \gamma \left[\vec{E} - (\vec{E} \cdot \vec{n})\vec{n}\right] + \gamma \vec{v} \wedge \vec{B}, \qquad (8)$$

$$\vec{B}' = (\vec{B} \cdot \vec{n})\vec{n} + \gamma \left[\vec{B} - (\vec{B} \cdot \vec{n})\vec{n}\right] - \gamma \vec{v} \wedge \vec{E}.$$
(9)

10. Show that this can be rewritten in the form

$$\vec{E}' = (\vec{E} \cdot \vec{n})\vec{n} + \gamma \left[\vec{n} \wedge (\vec{E} \wedge \vec{n}) + \vec{v} \wedge \vec{B}\right], \qquad (10)$$

$$\vec{B}' = (\vec{B} \cdot \vec{n})\vec{n} + \gamma \left[\vec{n} \wedge (\vec{B} \wedge \vec{n}) - \vec{v} \wedge \vec{E}\right].$$
(11)

Hint: use $\vec{a} \wedge (\vec{b} \wedge \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$.

11. In the non-relativistic limit, simplify the transformations (8) and (9), keeping linear terms in β .