M1 General Physics

Particles

Tensors, field strength and Lorentz transform of electromagnetic fields

1 Symmetric and antisymmetric tensors

1.1 Symmetrization, antisymmetrization and covariance

Consider a quadridimensional 2-tensor $M^{\mu \nu}$.

1. Provide a separation of $M^{\mu \nu}$ as a sum of two symmetric (S) and antisymmetric (A) tensors:

$$
\begin{equation*}
M^{\mu \nu}=S^{\mu \nu}+A^{\mu \nu} \tag{1}
\end{equation*}
$$

2. Recall the way $M^{\mu \nu}$ transform under a arbitrary Lorentz transformation Λ, encoded through its matrix elements Λ_{σ}^{ρ}.
3. Show that the decomposition (1) is covariant under Lorentz transformations.
4. Write the Lorentz transformation of $M^{\mu \nu}$ in a way which makes this separation explicit.

1.2 Transformation under boosts

We now consider a Lorentz boost of a frame F to a frame F^{\prime} along the x axis, encoded by $\beta=v / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$.
5. Recall the explicit expression of Λ.
6. We focus on the case of a symmetric tensor $S^{\mu \nu}$.

Write the Lorentz transformation of the various components of S under the above boost.
7. We focus on the case of an antisymmetric tensor $A^{\mu \nu}$.
a. What can be said about $A^{00}, A^{11}, A^{22}, A^{33}$ and their transformations?
b. How does A^{23} transforms?
c. Compare the transformation of A^{12}, A^{13} and A^{02}, A^{03} with the transformation of x^{1} and x^{0}. Deduce the transformation of these components.
d. Show that A^{01} is invariant under these boosts.

2 Lorentz transformations of electromagnetic fields

We now apply the previous results to the field strength

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E^{1} & -E^{2} & -E^{3} \\
E^{1} & 0 & -B^{3} & B^{2} \\
E^{2} & B^{3} & 0 & -B^{1} \\
E^{3} & -B^{2} & B^{1} & 0
\end{array}\right)
$$

where \vec{E} and \vec{B} are the electric and magnetic fields. We use a system of units such that $c=1$.
8. Show that under the considered boost along x, these fields transform as

$$
\begin{align*}
& E^{\prime 1}=E^{1} \tag{2}\\
& E^{\prime 2}=\gamma\left(E^{2}-\beta B^{3}\right) \tag{3}\\
& E^{\prime 3}=\gamma\left(E^{3}+\beta B^{2}\right) \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& B^{\prime 1}=B^{1} \tag{5}\\
& B^{\prime 2}=\gamma\left(B^{2}+\beta E^{3}\right) \tag{6}\\
& B^{\prime 3}=\gamma\left(B^{3}-\beta E^{2}\right) \tag{7}
\end{align*}
$$

9. Consider an arbitrary boost along the direction $\vec{n}\left(\vec{n}^{2}=1\right)$, i.e. with a velocity $\vec{v}=\beta \vec{n}$.

Show that under such a boost,

$$
\begin{align*}
\vec{E}^{\prime} & =(\vec{E} \cdot \vec{n}) \vec{n}+\gamma[\vec{E}-(\vec{E} \cdot \vec{n}) \vec{n}]+\gamma \vec{v} \wedge \vec{B} \tag{8}\\
\vec{B}^{\prime} & =(\vec{B} \cdot \vec{n}) \vec{n}+\gamma[\vec{B}-(\vec{B} \cdot \vec{n}) \vec{n}]-\gamma \vec{v} \wedge \vec{E} \tag{9}
\end{align*}
$$

10. Show that this can be rewritten in the form

$$
\begin{align*}
\vec{E}^{\prime} & =(\vec{E} \cdot \vec{n}) \vec{n}+\gamma[\vec{n} \wedge(\vec{E} \wedge \vec{n})+\vec{v} \wedge \vec{B}] \tag{10}\\
\vec{B}^{\prime} & =(\vec{B} \cdot \vec{n}) \vec{n}+\gamma[\vec{n} \wedge(\vec{B} \wedge \vec{n})-\vec{v} \wedge \vec{E}] \tag{11}
\end{align*}
$$

Hint: use $\vec{a} \wedge(\vec{b} \wedge \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.
11. In the non-relativistic limit, simplify the transformations (8) and (9), keeping linear terms in β.

