
M1 General Physics
Particles

Relativistic kinematics

Exercise 1: Relative velocity

Consider two particles of momenta pµ and qµ. Provide a covariant expression of their relative
velocity, defined in a frame in which one of the two is at rest. It will be useful to compute
p · q in such a frame.

Solution

In the frame in which one of the two particles is at rest, for example in the frame where
particle 1 is at rest, with p = (m1,~0) and q = ( m2√

1−v2
, ~q), one gets

p · q = m1m2√
1− v2

where v is the relative velocity. Thus

v =
√

1− m2
1m

2
2

(p·q)2 .

with m2
1 = p2 and m2

2 = q2 .
Since p·q is a Lorentz scalar, this expression as the same expression in any frame, thus allowing
to compute the relative velocity without any explicit use of a Lorentz transformation.

Exercise 2: Fixed target experiments versus collider experiments

1. We send a particle of mass m, of kinetic energy K (total energy minus energy at rest,
i.e K = E − m), on another identical particle at rest (so-called fixed target experiment).
Compute the energy in the center-of-mass frame.

Solution

In the center-of-mass frame, ~p1 + ~p2 = 0 and thus

E∗ =
√

(p1 + p2)2 =
√

p21 + p22 + 2p1 · p2 =
√
2m2 + 2mE =

√
4m2 + 2mK

where we have used the fact that p1 · p2 = mE in the frame where particle 1 is at rest, and
the relation K = E −m.
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2. We accelerate two particles of opposite momenta, of mass m and of kinetic energy K∗

(collider mode, the symbol ∗ is used to refer to the center-of-mass frame). What should be
the value of K in the fixed target experiment of question 1. in order to reach the same energy
in the center-of-mass frame? Discuss the limits K∗ ≪ m and K∗ ≫ m. Explain why most
of the modern experiments in high-energy physics are made using colliders (LEP at CERN,
HERA at Hamburg, Tevatron at Fermilab near Chicago, SLC in Stanford, LHC, future EIC
(2030), ILC e+e− projects, FCC-ee and FCC-pp).
The RHIC collider, at Brookhaven (near New-York) collides two beams of heavy ions, for
example Au-Au with 200 GeV per nucleon. Compute the energy K of a similar fixed target
experiment. One should compare this result to the highest possible energy available at SPS,
which was a fixed target experiment (beams of 160 GeV per nucleon).

Solution

We now have for the total energy E∗ = 2(m+K∗). In order to reach the same energy in the
center-of-mass frame using a fixed target experiment, one should thus satisfy

2(m+K∗) =
√
4m2 + 2mK

that is
8mK∗ + 4m2 + 4K∗2 = 4m2 + 2mK

and thus

K = 4K∗ + 2K∗2

m
= 4K∗[1 + K∗

2m
] .

Non relativistic limit: K∗ ≪ m
The velocity of the incident particle should be 2 times larger in the fixed target experiment,
and therefore carry a kinetic energy 4 times larger.

Relativistic limit: K∗ ≫ m
The enhancement factor 4 + K∗

2m
then increases dramatically.

In fixed target experiments, one cannot acheive very high values of E∗.
At RHIC, K∗ = 200 GeV/nucleon, and thus

K = 4× 200×A

(

1 +
200

2

)

that is K
A

≃ 80.8 TeV /nucleon ! Even at the LHC, with a nominal energy of 7 TeV per
charge, i.e. for 82

207Pb, an energy of 2.76 TeV/nucleon, this cannot be achieved. Nevertheless,
fixed target experiment are very useful in various situations, where the center-of-mass energy
is not the key parameter:
- whenever polarization of the target is required (it is much more difficult to polarize a beam
of proton then a fixed target for example)
- when the density of the target can have a very sizable effect on the magnitude of cross-
sections (it is much easier to have a dense target than a high intensity beam).
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3. One collides two beams of ultra-relativistic particles (E ≫ m) in the opposite direction,
of energies E1 and E2. Compute the center-of-mass energy.
The HERA collider (1992-2007) was colliding a beam of protons of 800 GeV with a beam of
electrons of 30 GeV. Compute the center-of-mass energy.

Solution

Neglecting masses, we have, assuming the collision axis is the z−axis, p1 = (E1, 0, 0, E1) and
p1 = (E2, 0, 0,−E2) so that

E∗ =
√

(p1 + p2)2 =
√

2p1 · p2 =
√

2E1E2 + 2E1E2 = 2
√

E1E2 .

At HERA, this gives E∗ ≃ 310 GeV .

Exercise 3: Photoproduction of pions

Consider the reaction γp → π0p, where p means a proton, of mass M = 939 MeV, γ is a
photon and π0 a neutral pion, of mass m ≃ 135 MeV. We denote respectively P, k = (k0, ~k)
and q = (q0, ~q) the four-momenta of the incoming proton, of the incoming photon and of the
emitted pion.

1. We assume that the proton is initially at rest. Compute, literally and then numerically,
the minimal energy of the photon in order that the reaction γp → π0p would be possible.

Solution

Let us first study the threshold of an arbitrary reaction. In the center-of-mass frame, summing
over the produced particles labeled by i, we get on the one hand

(
∑

pi)
2 = (

∑

Ei)
2 = E∗2 .

On the other hand, since Ei =
√

~p 2
i +m2

i > mi so that E∗2 > (
∑

mi)
2 and thus

E∗ >
∑

mi ,

with an equality when ∀i, ~p 2
i = 0 . The minimal rest frame total energy (named as threshold

energy) is thus equal to
∑

mi .
Here, E∗ > M +m. Besides, E∗2 = (P + k)2 = M2 + 2P · k . In the frame where the proton
is at rest, we have P · k = M k0 and thus, combining the two above results,

M2 + 2Mk0
> (M +m)2 = M2 + 2Mm+m2

and finally

k0 > m+ m2

2M
.

Note that in the limit of an infinite mass M , one recover the obvious constraint k0 > m
obtained when producing a proton at rest.
This gives numerically k0 > 144.7 MeV .
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2. Compute the energy of the incident photon as a function of the emitted pion energy q0

and of the angle θ of the pion momenta with respect to the incident photon.

Solution

Conservation of energy-momentum reads k + P = q + Pf where Pf is the momentum of
final proton. Thus k + P − q = Pf and squaring gives (k + P − q)2 = P 2

f = M2 so that
k2 + (P − q)2 + 2k · (P − q) = M2 and thus, since k2 = 0 and (P − q)2 = M2 − 2P · q +m2,

2k · (P − q) = 2P · q −m2

In the frame where the proton is at rest, this reads

2k · (P − q) = 2k0(M − q0) + 2k0|~q | cos θ = 2Mq0 −m2

and finally

k0 =
q0 −m2/(2M)

1− (q0 − |~q | cos θ)/M

with |~q | =
√

q20 −m2 .

P

γ(k)

Pf

θ

π(q)

Figure 1: Scattering in the rest frame of the proton.

3. Simplify the previous results in the limit where m and k0 are very small with respect to
M. Comment on the result.

Solution

The relationship
2k0(M − q0) + 2k0|~q| cos θ = 2Mq0 −m2

now reduces to 2Mk0 = 2Mq0 i.e. k0 = q0 : all the energy of the photon is transfered to the
pion. The threshold energy is m.
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4. This reaction plays a crucial role in the physics of high energy cosmic rays: indeed, the
Universe is bathed with photon (the cosmological radiation at 3K) and protons of very high
energy can scatter with these photons and produce pions, thus slowing them down. Consider
thus the scattering of a proton of energy E and a photon of energy k0 = 10−3 eV of opposite
direction (this is the order of magnitude of the 3K radiation). Compute the minimal value
of E in order that the reaction would be possible. This cut is known under the name of
Greisen-Zatsepin-Kuzmin (1966). One of the enigma of current studies of cosmic rays is the
fact that there are signals of cosmic rays of higher energies.

Solution

The condition E∗ > M +m reads, since E∗2 = (P + k)2 = M2 + 2P · k,

M2 + 2P · k > M2 + 2Mm+m2

i.e. 2P · k > 2Mm + m2 . The proton and the photon are going in opposite directions,
therefore, denoting p = |~p| ,

P · k = Ek0 − ~p · ~k = Ek0 + pk0

and the condition thus reads

E + p >
2Mm+m2

2k0
.

In the limit k0 ≪ m this leads to E + p ≫ M and thus p ≃ E . We finally get

E >
2Mm+m2

4k0
≃ 7.1019 eV

If the collision is not head-on, introducing the angle θ between −~k and ~p, see Fig. 2,

θ~p
~k

Figure 2: A non head-on collision.

on gets
P · k = Ek0 + pk0 cos θ

and the threshold condition P · k > mM +m2/2 reads

Ek0 + pk0 cos θ > mM +
m2

2

with p ∼ E so that we get

E >
2Mm+m2

2(1 + cos θ)k0
> Ethreshold

θ=0 .
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The proton scatters a large number of photons of the cosmological bath, which are randomly
distributed, therefore in principle any proton of energy larger than the above cut will reduce
its energy, until it becomes smaller that this cut. Such a strong suppression has been seen
by Auger and HiRes experiments. However, it turns out that there exist a few number of
events with an energy above this cut. This might be explained, although the situation is
not yet clarified, by the fact that the mean path is of the order of 6 Mpc (one parsec is
roughly 3.3 light-year; this mean path accounts for both the cross-section and the density
of cosmological photons), so that proton traveling over distances larger than 50 Mpc will
travel enough to reduce their energy below this cut. Thus, any proton emitted at a smaller
distance, for example from a source inside the Milky Way (which has a stellar size of the order
of 200 Mly), may not have time to loose its energy through scattering over the cosmological
photon bath. Another explanation is the fact that ultra-energetic cosmic rays can be heavier
elements than protons, so that Greisen-Zatsepin-Kuzmin cut does not apply.

Exercise 4: Compton effect

Compton scattering is the elastic scattering of a photon of momentum ~k with an electron
of mass m and of momentum ~p. We denote by ~k′ the momentum of the scattered photon,
E =

√

~p 2 +m2 the energy of the incoming electron, and θ the angle between ~k and ~p.

1. Check that P ·K = (P +K) ·K ′.
Infer that the energy of the scattered photon equals

|~k′| = E − p cos θ

E + |~k| − ~̂k′ · (~p+ ~k)
|~k| (1)

where we denote as k̂′ ≡ ~k′/|~k′| the direction of ~k′.

Solution

The kinematical variables and the angles are illustrated in Fig. 3. Conservation of energy-

θ θ′

e−(P )

γ(K) γ(K ′)

e−(P ′)

Figure 3: Compton scattering.

momentum reads P +K −K ′ = P ′ which, using the mass-shell condition for the out-going
electron leads to

(P +K −K ′)2 = P
′2 = m2

= P 2 +K2 +K
′2 + 2P ·K − 2(P +K) ·K ′
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with P 2 = m2, K2 = K
′2 = 0 , which leads to P ·K = (P +K) ·K ′.

Denoting P = (E, ~p), K = (k0, ~k), K ′ = (k0′ , ~k′) and k = |~k| = k0, k′ = |~k′| = k0′ , we thus
get

Ek − ~p.~k = Ek′ + kk′ − (~p+ ~k) · ~k′

then

(E − p cos θ)k = (E + k)k′ − (~p+ ~k) · ~k′ = [(E + k)− (~p+ ~k) · ~̂k′]k′

and finally

k0′ =
E − p cos θ

E + k0 − (~p+ ~k) · ~̂k′
k0 .

2. We assume that the electron is at rest. Compute the wave length λ′ of the scattered
photon as a function of the wave length λ of the incoming photon, of the Compton wave
length defined as λC = h/mc, and of the angle θ′ between ~k and ~k′.

Solution

The electron is assumed to be at rest: ~p = ~0 and E = m. Thus

k0′ =
m

(m+ k0)− ~k · ~̂k′
k0 =

k0

1 + k0

m
− k0

m
cos θ′

.

From λ = h
k

and λC = h
m

we get

1

λ′
=

1

λ

1

1 + λC

λ
− λC

λ
cos θ′

=
1

λ+ λC(1− cos θ′)

and thus
λ′ = λ+ λC(1− cos θ′) .

3. In the more general case where ~p 6= ~0, deduce from equation (1) the maximal energy of
the diffused photon for a given θ.

Solution

k0′ is maximal when, for fixed θ and k0, the denominator in the expression of k0′ is minimal,

i.e. (~p + ~k) · ~̂k′ is maximal, which means ~k′ and ~p + ~k collinear and pointing in the same
direction. We thus get

k0′

max =
E − p cos θ

E + k0 − |~p+ ~k|
k0 .
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4. We assume the electron to be ultrarelativistic. Check that in the limit of a low energy
photon,

|~k′|max =

(

2E sin(θ/2)

m

)2

|~k| . (2)

Specify the condition on |~k| for this equation to be valid. Check the validity of the various

approximations and calculate |~k′|max in the case of a laser beam of energy 1 eV interacting
with an electron beam of energy E = 6 GeV, 12 GeV since 2016, in opposite direction. These
are typical value of the Compton polarimeter used at Thomas Jefferson National Accelerator
Facility (JLab), located in Virginia (USA). Such a device allows, using a polarized laser, to
measure the polarization of the electron beam. It also allows to produce high energy photons
with a partial polarization (using the maximal energy of the produced photon corresponding
to the backscattering regime).

Solution

In the limit of an ultra-relativistic electron and a low energy photon, one can make the
approximation k ≪ p, E and m ≪ p, E, so that

k0′

max ∼
E(1− cos θ)

E − p
k0 .

Since

E =
√

~p 2 +m2 ∼ p +
m2

2p
and thus E − p ∼ m2

2E

one gets

k0′

max ∼
E(1− cos θ)

m2/2p
k0

and thus

k0′

max ∼
(

2E sin θ/2

m

)2

k0 .

This is a very appealing result: the energy of the out-going photon scales like the square of
the energy of the incoming electron. It is maximal in the backward configuration in which
the initial photon scatters head-on with the electron (θ = π) and the out-going photon is

emitted backward (θ′ = π since here ~p+ ~k ∼ ~p points in the same direction as ~k′). Selecting
those photons, one can produce a very energetic beam of photon from a low energy laser
source, pumping the energy of the incoming beam of electrons.
Note that the high-energy approximation which we have used is valid as soon as m2/(2E) ≫
k0 which at JLab gives, for E = 6 GeV, k0 ≪ 22 eV and for E = 12 GeV, k0 ≪ 11 eV,
producing beams of photons of maximal energies respectively equal to 0.55 GeV and 2.2 GeV.

Exercise 5: Electron scattering
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In this exercise, we consider the scattering, either elastic or inelastic, of an ultrarelativistic
electron (its mass will be neglected) on a target. We denote by K = (k,~k) and K ′ = (k′, ~k′)
the four-momenta of the electron before and after the collision, and P = (E, ~p) and P ′ those

of the target, which has a mass M. We assume that ~k and ~p are collinear and of opposite
directions.
If the scattering is elastic, the energy k′ of the outgoing electron is a function of the angle
between ~k and ~k′ (see the previous exercise). This angle will be denoted here by θ. In the
more general case of an inelastic scattering, k′ and θ are independent variables.

1. It turns out to be convenient to use, instead of k′ and θ, the Lorentz invariant variables
Q2 and P · q, where q ≡ K −K ′. Compute these two quantities as functions of k′, θ, E and
k. What is the sign of q2? Traditionally, one denotes Q2 = −q2.

Solution

The kinematics is illustrated in Fig. 4. From q = K −K ′ we have

θe−(K) P (P )

X(P ′)

e−(K ′)

Figure 4: Head-on electron-proton scattering, where X denotes the proton remnants.

q2 = (K −K ′)2 = K2 +K
′2 − 2K ·K ′ = −2K ·K ′ = −2kk′(1− cos θ) 6 0 ,

so that we naturally denote Q2 = −q2 > 0, and

P · q = P ·K − P ·K ′ = Ek + kp− Ek′ − pk′ cos θ

where we denote p = |~p|.

2. Consider a scattering which transforms the target into a particle of mass M ′, with M ′ > M.
What is the relationship between Q2 and P · q? Infer the sign of P · q. Whenever M ′ is close
to M, such a scattering is named quasi-elastic.

Solution

From K −K ′ + P = P ′ we get

(K −K ′ + P )2 = M
′2 = q2 + 2q · P + P 2 = q2 + 2q · P +M2

so that q2 + 2q · P = M
′2 −M2 > 0 and thus, since q2 < 0, P · q > 0 .
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3. We assume that the electron faces an elastic scattering off a part of a target, characterized
by a four-momentum xP, with 0 ≤ x ≤ 1, the rest of the target being spectator, not involved
in the collision. Express x as a function of Q2 and P · q. Such a scattering is named deep
inelastic (DIS) when Q2 is large (with respect to Λ2

QCD). In the case of DIS at high energy
(a few GeV or more) on a proton, x can be interpreted as the momentum fraction carried by
a quark (constituent of the proton) scattered by the incoming electron.

Solution

This model is due to Bjorken and Feynman, where the photon scatters off a part of the proton
(“parton”), which turns out to be a quark. This quark is almost free during the very short time
of the interaction, for Q2 ≫ Λ2

QCD, the scale which characterizes the scale of hadronization,
since at such a large scale, strong coupling is small, due to asymptotic freedom of QCD. This
is illustrated by Fig. 5.
From the relation K −K ′ + xP = xP ′ we get (K −K ′ + xP )2 = (xP ′)2 which reads

q2 + 2x q · P + x2M2 = x2M2

and thus

x = Q2

2P ·q ≡ xBjorken . (3)

This relation allowed to check the model in 1969, since xBjorken can be measured experimen-
tally (q and thus Q2 are known since K (beam) and K ′ (reconstructed out-going e−) are
known, and P is known (target)), so that one has a direct access to x!

e−(K)

e−(K ′)

γ∗(q)

xP

xP ′

P (P )

Figure 5: Parton model.
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4. Draw, in the Q2, P · q plane, the lines corresponding to DIS at fixed x, as well as the lines
corresponding to quasi-elastic scattering.

Solution

In order to simplify the notations, we now denote xBj = xBjorken.

Quasi-elastic scattering: corresponds to M ′ fixed. Since

q2 = −Q2 = M
′2 −M2 − 2P · q

one has
2P · q = Q2 +M

′2 −M2

which means parallel lines of slope 1/2, the limiting case being M
′2 = M2, corresponding to

xBj = 1, i.e. the line passing through 0.

Inelastic scattering: corresponds to xBj fixed, that is

P · q =
Q2

2xBj

which means lines passing through 0, of slope 1/(2xBj). This is illustrated in Fig. 6

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Q2

P · q

xBj
= 1

Figure 6: The (Q2, P · q) plane. Continuous lines: quasi-elastic scattering (M ′ fixed). Dashed
line: inelastic scattering at fixed xBj.

5. The target is assumed to be at rest. Draw, again in the Q2, P · q plane, the lines corre-
sponding to fixed k′ as well as those corresponding to fixed θ. Deduce from that the allowed
kinematical region. Compute the maximal value of Q2 for a given x, in the limit k ≫ M.
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Solution

In the fixed target mode, E = M and p = 0. From

q2 = −2kk′(1− cos θ) 6 0 ,

we get

k′ =
Q2

2k(1− cos θ)
.

Since P · q = M(k − k′) we obtain

P · q = Mk − M

2k(1− cos θ)
Q2 . (4)

Fixed k′: P ·q is therefore fixed, and we get an horizontal line in the (Q2, P ·p) plane. Besides,

Q2 = 2kk′(1− cos θ)

which thus varies between 0 and 4kk′.

Fixed θ: we then have a straight line in the (Q2, P · p) plane, since

P · q = Mk − M

2k(1− cos θ)
Q2 .

The slope − M

2k(1− cos θ)
varies between −∞ and −M/(4k) .

Note that 2P · q = Q2 + M
′2 + M2 so that P · q > Q2/2 , the equality corresponding to

xBj = 1 . Combining Eq. (4) with the definition (3) of xBj, we get

Q2 = 2k2(1− cos θ)− Q2

xBj

k

M
(1− cos θ)

and thus

Q2 =
2k2(1− cos θ)

1 + k
MxBj

(1− cos θ)

Denoting C = 1− cos θ we have

dQ2

dC
=

2k2

(

1 + k
MxBj

C
)2 > 0

so that Q2 is maximal for C maximal, i.e. θ = π . We thus get

Q2
max =

4k2

1 + 2k
MxBj

∼ 2MxBj k

in the limit k ≫ M .
The kinematics is illustrated in Fig. 7.
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Q2

P · q

Mk
θ = π : P · q = Mk − M

4kQ
2

θ
=

0
fixed θ

fixed k′

P · q =
Q
2

2
i.e.

xBj
= 1

fix
ed
xB

j

Figure 7: The allowed kinematical range in the (Q2, P ·q) plane, in fixed target mode. Dashed
line: inelastic scattering at fixed xBj. Dotted line: fixed θ. Gray lines: fixed k′.

6. Consider again the previous question, in the case of a collider, in which the target moves
at an ultra-relativistic energy E ≫ M. In the case of HERA (DESY, Hamburg, 1992-2007),
k = 30 GeV and the target was a proton of energy E = 800 GeV. Compute the maximal
value of Q2 for x = 10−4. Why is it interesting to accelerate protons? In the future (circa
2030), EIC will scatter electron beams on proton and ions beams.

Solution

In collider mode, neglecting the proton mass, P = E, and we get, from the result of question
1.,

P · q = 2Ek − (E + E cos θ)k′ .

Besides

k′ =
Q2

2k(1− cos θ)

so that

P · q = 2Ek − E(1 + cos θ)

2k(1− cos θ)
Q2 . (5)

The ratio 1+cos θ
1−cos θ

varies between 0 and +∞ when cos θ varies in the range [−1, 1], and so does
the slope.
Combining Eq. (5) and the definition (3) one get

(

1

2xBj
+

E

2k

1 + cos θ

1− cos θ

)

Q2 = 2Ek
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and thus

Q2 =
2Ek

1
2xBj

+ E
2k

1+cos θ
1−cos θ

is maximal when 1+cos θ
1−cos θ

is minimal, thus for θ = π , i.e.

Q2
max = 4EkxBj .

The allowed kinematical range is illustrated in Fig. 8.

Q2

P · q

2Ek
θ = π

θ
=

0

fixed θ P · q =
Q
2

2
i.e.

xBj
= 1

fix
ed
xB

j

Figure 8: The allowed kinematical range in the (Q2, P · q) plane, in collider mode. Dashed
line: inelastic scattering at fixed xBj. Dotted line: fixed θ.

At HERA, Q2
max = 2×800×10−4×30 ≃ 9.6 GeV2. For a given xBj, the maximal value of Q2

is much higher than in fixed mode, and thus the resolution 1
Q

is much thiner. Furthermore,

Q2 remains large enough with respect to Λ2
QCD to justify the applicability of perturbative

method, even when xBj is so small that the number of partons (quarks, gluons) is very large,
and that collective effects are expected.
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