
M1 General Physics
Particles

Cross-sections

1 Invariant one-particle phase-space
1. Show that

d3~p

(2π)32E(|~p |)
=

d4p

(2π)4
(2π)δ(p2 −m2)θ(p0) (1)

where E = E(|~p |) =
√
~p 2 +m2, and conclude about the Lorentz invariance of this one-

particle phase-space.
Hint: use the fact that

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

(2)

where xi are the simple roots of f(x).

Solution

One should just write

δ(p2 −m2)θ(p0) = δ(p20 − ~p 2 −m2)θ(p0)

The equation p20 − ~p 2 −m2 = 0 has two roots p0 = ±E(|~p |) =
√
~p 2 +m2, but the positive

energy constraint θ(p0) selects the positive one. Since

d

dp0
(p20 − ~p 2 −m2)(p0 = E) = 2E ,

we thus have
δ(p2 −m2)θ(p0) =

δ(p0 − E)

2E

q.e.d. The Lorentz invariance is obvious from the R.H.S of Eq. (1).

2. Write d3~p in terms of p = |~p| (beware to this rather standard notation: p here should not
be confused with the 4-momentum!) and of the elementary solid angle d2Ω.

Solution

d3p = p2 dp d2Ω .
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3. Write d2Ω in spherical coordinates.

Solution

d2Ω = sin θdθdφ

2 Phase space in the center-of-mass frame
We consider the 2→ 2 process A(pA)B(pB)→ C(pC)D(pD), where A, B, C, D are particles
of mass respectively equal to mA, mB, mC , mD. Our aim is to simplify the expression of the
phase space

d(P.S) = (2π)4δ(4)(pA + pB − pC − pD)
d3pC

(2π)32EC

d3pD
(2π)32ED

(3)

in the center-of-mass frame. We denote pC = |~pC | and pD = |~pD| . One may use the Mandel-
stam variable s = (pA + pB)2. In the center-of-mass frame, we denote p∗f = pC .

1. Show that in the center-of-mass frame,

d(P.S) =
1

4π2
δ(3)(~pC + ~pD) δ(EC(pC) + ED(pD)−

√
s)

d3pC
2EC(pC)

d3pD
2ED(pD)

, (4)

and give the expressions of EC(pC) and ED(pD).

Solution

In the center-of-mass frame, we have ~pA + ~pB = 0 and thus s = (pA + pB)2 = (EA + EB)2.
The 4-momenta conservation then reads ~pC + ~pD = 0, so that pC = pD, and EC + ED =
EA + EB =

√
s.

Besides, EC =
√
m2
C + p2C and ED =

√
m2
D + p2D =

√
m2
D + p2C . Thus,

δ(4)(pA + pB − pC − pD) = δ(3)(~pC + ~pD) δ(EC(pC) + ED(pC)−
√
s) .

2. Show finally that

d(P.S) =
1

4π2

p∗f
4
√
s
d2Ω . (5)

Hint: one may use Eq. (2).
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Solution

We have
d(P.S) =

1

4π2
δ(f(pC))

p2C dpC d
2Ω

2EC(pC) 2ED(pC)
,

with f(pC) =
√
m2
C + p2C +

√
m2
D + p2C −

√
s. We denote p∗f the positive root of f(pC). Since

f ′(pC) =
pC√

m2
C + p2C

+
pC√

m2
D + p2C

=
pC(
√
m2
C + p2C +

√
m2
D + p2C)√

m2
C + p2C

√
m2
D + p2C

=
pC
√
s

EC(pC)ED(pC)
,

we thus get

δ(f(pC))
p2C dpC

2EC(pC) 2ED(pC)
= δ(pC − p∗f )

1

|f ′(p∗f )|
p2C dpC

2EC(pC) 2ED(pC)
=

p∗f
4
√
s

and thus

d(P.S) =
1

4π2

p∗f
4
√
s
d2Ω .

3 Study of the “spinless” electron-muon scattering
Consider “spinless” electron-muon scattering. Denote θ the scattering angle in the center-of-
mass system (c.m.s), i.e. the angle between the outgoing and incoming electron (or muon) mo-
mentum. One may use the notation of section 1, with me = mA = mC and mµ = mB = mD.

1. Write the expression of the scattering amplitudeM.

Solution

The scattering amplitudeM reads

iM = [ie(pA + pC)µ]

[
−igµν

q2

]
[ie(pB + pD)µ] ,

where q2 = t = (pA − pC)2, and thus

M = e2(pA + pC) · (pB + pD)
1

q2
,

2. We denote s = (pA + pB)2. In the c.m.s., write the equations satisfied by ~pA, ~pB, ~pC , ~pD
and EA, EB, EC , ED. Deduce an equation satisfied by |~pA| and |~pC | and conclude about their
relative magnitude.
Then, write the energy and space components of pA, pB, pC , pD in terms of s = (pA + pB)2

and of EA, EB, ~pA and ~pC .
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Solution

In the c.m.s, one has ~pA + ~pB = 0 and ~pC + ~pD = 0, and thus
√
s = EA + EB = EC + ED.

First, this implies that

|~pA| = |~pB| =
√
E2
A −m2

A =
√
E2
B −m2

B and |~pC | = |~pD| =
√
E2
C −m2

A =
√
E2
D −m2

B .

Second,
√
s = EA + EB = EC + ED reads√

m2
A + ~p 2

A +
√
m2
B + ~p 2

A =
√
m2
A + ~p 2

C +
√
m2
B + ~p 2

C

and thus |~pA| = |~pC |. We can thus write

pA = (EA, ~pA)

pB = (EB,−~pA)

pC = (EA, ~pC)

pD = (EB,−~pC)

3. Give the expression of q2 as a function of θ and |~pA|. Then, write q2 in terms of s =
(pA + pB)2, mA, mB. One may use the obtained expression for |~pA| in the 2020 mid-term
exam, or directly solve the equation satisfied by |~pA| in question 2.

Solution

We have

q2 = (pA − pC)2 = p2A + p2C − 2pA · pC = 2m2
A − 2EAEC + 2|~pA||~pC | cos θ

= 2m2
A − 2E2

A + 2|~pA|2 cos θ = −2|~pA|2(1− cos θ)

= − [s− (mA −mB)2][s− (mA +mB)2]

2s
(1− cos θ)

where we have used the fact that in the c.ms.,

|~pA|2 =
[s− (mA −mB)2][s− (mA +mB)2]

4s
,

obtained either by solving √
m2
A + ~p 2

A +
√
m2
B + ~p 2

A =
√
s

or using Eq. (13) of the mid-term exam of November 2020.
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4. Express the numerator ofM as a function of EA, EB, ~p 2
A and cos θ. Write EA and EB in

terms of s, mA, mB (one may rely on results obtained in the 2020 mid-term exam) and show
finally that

M = e2
[

3 + cos θ

1− cos θ
+

C

1− cosθ

]
(6)

where C is a function of s, mA, mB which vanishes in the high-energy limit.

Solution

(pA + pC) · (pB + pD) = (2EA, ~pA + ~pC) · (2EB,−~pA − ~pC) = 4EAEB + 2~p 2
A(1 + cos θ) .

We have, either computing EA =
√
m2
A + ~p 2

A and EB =
√
m2
B + ~p 2

A from the obtained
expression for ~p 2

A, or using Eq. (16) of the 2020 mid-term exam,

EA =
s+m2

A −m2
B

2
√
s

and EB =
s+m2

B −m2
A

2
√
s

and thus

(pA + pC) · (pB + pD)

=
2(s+m2

A −m2
B)(s+m2

B −m2
A) + (s− (mA −mB)2)(s− (mA +mB)2)(1 + cos θ)

2s

so that

M = e2
[
2

s2 − (mA −mB)2(mA +mB)2

(s− (mA −mB)2)(s− (mA +mB)2)

1

1− cos θ
+

1 + cos θ

1− cos θ

]
= e2

[
3 + cos θ

1− cos θ
+ 4

s(m2
A +m2

B)− (m2
A −m2

B)

(s− (mA −mB)2)(s− (mA +mB)2)

1

1− cos θ

]

5. Prove finally that the differential cross-section reads

dσ

dΩ

∣∣∣∣
cms

=
α2

4s

(
3 + C + cos θ

1− cos θ

)2

, (7)

where α = e2/(4π) is the fine-structure constant.

Solution

We know that in the c.ms., p∗i = |~pA| = |~pC | = p∗f so that the differential cross-section reads

dσ

dΩ

∣∣∣∣
cms

=
1

64π2s

p∗f
p∗i
|M|2 =

e4

64π2s

(
3 + C + cos θ

1− cos θ

)2

=
α2

4s

(
3 + C + cos θ

1− cos θ

)2

.
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