

Exam

Second session

February 9th 2023

Documents allowed

Notes:

- The subject is deliberately long. Solving at least one of the two problems will ensure a good mark!

- One may use the usual system of units in which c = 1 and $\hbar = 1$.

- Space coordinates may be freely denoted as (x, y, z) or (x^1, x^2, x^3) .

- Any drawing, at any stage, is welcome, and will be rewarded!

1 Photo-production of charm

The lightest meson containing a charmed quark is the D^0 . The production of a D^0 meson and of its anti-particle \bar{D}^0 can be done by using a beam of high energy photons which collide with protons (immobile in the reference frame of the laboratory R) according to the reaction

$$\gamma \, p \to p \, D^0 \, \bar{D}^0 \,. \tag{1}$$

We denote as m_p the proton mass and m_0 the D^0 mass (which is identical to the mass of the \overline{D}^0).

1. We seek to determine the reaction threshold, i.e. the minimum energy of the photon for which the reaction can take place. We will note E_{γ} the value of this energy in the laboratory reference frame.

(i) Recall the definition of the center of mass reference frame R^* .

_____ Solution _____

This is the frame in which the total momentum is zero.

(ii) At threshold, the momentum in R^* of each produced particle vanishes. Write in R^* the sum of the incoming energies $E^*_{\gamma} + E^*_p$ as a function of m_p and m_0 .

_____ Solution _____

The conservation of energy implies that $E_{\gamma}^* + E_p^*$ should be identical to the sum of the energy of the produced particles. Since they are at rest, those energies are equal to their masses. Therefore,

$$E_{\gamma}^* + E_p^* = m_p + 2m_0 \,.$$

(iii) Compute $(p_{\gamma} + p_p)^2$ in both R and R^* frames and deduce the value of E_{γ} as a function of m_p and m_0 .

____ Solution ____

In the laboratory frame, $\vec{p_p} = 0$, therefore $(m_1 + m_2)^2 = m_1^2 + 2m_2 m_2 = m_2^2 + 2E_1E_2 = 2\vec{x}$

 $(p_{\gamma} + p_p)^2 = m_p^2 + 2p_{\gamma} \cdot p_p = m_p^2 + 2E_{\gamma}E_p - 2\vec{p}_{\gamma} \cdot \vec{p}_p = m_p^2 + 2E_{\gamma}m_p = (E_{\gamma}^* + E_p^*)^2 = (m_p + 2m_0)^2$ and thus

$$E_{\gamma} = \frac{4m_0^2 + 4m_p m_0}{2m_p} = 2m_0 + \frac{2m_0^2}{m_p}$$

(iv) Compute numerically E_{γ} . We give $m_p = 938 \text{ MeV/c}^2$ and $m_0 = 1865 \text{ MeV/c}^2$.

_____ Solution _____

One gets $E_{\gamma} \simeq 11.15$ GeV.

2. We want to create a beam of very energetic photons. For this we use the Compton backscattering : a beam of electrons of 30 GeV collides head-on with a monochromatic beam of monochromatic beam of photons of wavelength $\lambda_1 = 266$ nm (a laser). The kinematics of the process is represented on the figure below in the laboratory frame R as well as in the frame R' in which the electron (bold point) is initially at rest. The incident photon is designated by 1 and the scattered photon by 2.

(i) Write the conservation of the quadri-momentum in R'. Deduce the expression of the energy E'_e of the scattered electron as a function of the energy E'_1 of the incoming photon, of the energy E'_2 of the scattered photon and of the mass m_e of the electron.

Solution _

In the frame R', the energy of the incoming electron is m_e . The conservation of energy thus reads

$$E_1' + m_e = E_2' + E_e'$$

so that

$$E'_e = E'_1 - E'_2 + m_e$$

(ii) Show that one has the following relation in R':

$$E_2' = \frac{E_1'}{1 + \frac{E_1'}{m_e} (1 - \cos \theta')} \,. \tag{2}$$

Energy-momentum conservation reads

$$p_2' - p_1' = p_{e_i} - p_{e_f}$$

so that taking the square gives

$$(p'_2 - p'_1)^2 = -2p'_1 \cdot p'_2 = (p_{e_i} - p_{e_f})^2 = 2m_e^2 - 2m_e E'_e$$

Using the conservation of energy, see the previous question, one thus gets

$$-2E_1'E_2'(1-\cos\theta') = -2m_eE_1' + 2m_eE_2'$$

so that, as expected,

$$E'_{2} = \frac{E'_{1}}{1 + \frac{E'_{1}}{m_{e}}(1 - \cos\theta')}$$

(iii) Express the Lorentz factor γ when passing from the frame R to R', and compute its numerical value.

Compute the numerical values of E_1 , E'_1 and $E'_2(\theta' = \pi)$. We give $m_e = 0.511 \text{ MeV/c}^2$ and $h = 6.626 \cdot 10^{-34} \text{ J.s.}$

_____ Solution _____

One has $E_e = \gamma m_e$, so that

$$\gamma = \frac{E_e}{m_e} = \frac{30 \times 10^3}{0.511} \simeq 5.87 \cdot 10^4 \,.$$

The Lorentz transformation reads

$$E_1' = \gamma E_1 - \beta \gamma p_{1x} = \gamma E_1 + \beta \gamma E_1 = \gamma (1+\beta) E_1 \sim 2\gamma E_1$$

$$p_{1x}' = -\beta \gamma E_1 + \gamma p_{1x} = -\beta \gamma E_1 - \gamma E_1 = -\gamma (1+\beta E_1) \sim -2\gamma E_1$$

Besides,

$$E_2'(\theta' = \pi) = \frac{E_1'}{1 + \frac{2E_1'}{m_e}}.$$

Thus,

$$E_1 = \frac{h c}{\lambda} \simeq 7.47 \cdot 10^{-19} \,\mathrm{J} \simeq 4.66 \,\mathrm{eV} \,,$$

 $E_1' \simeq 548 \,\mathrm{keV} \,,$

and

$$E_2' \simeq 174 \,\mathrm{keV}$$
 .

3. Backscattering

(i) Justify that $\cos \theta = -p_{x2}/E_2$, and write a similar relation in R'. Using the Lorentz transformation allowing to pass from R to R', deduce that

$$\cos\theta = \frac{\cos\theta' - \beta}{1 - \beta\cos\theta'}.$$
(3)

Since for the two photons $E_1 = \|\vec{p}_1'\|$ and $E_2 = \|\vec{p}_2'\|$, we have, by a simple projection on the x axis:

$$p_{x2} = -E_2 \cos \theta$$
 and $p'_{x2} = -E'_2 \cos \theta'$.

Besides, the Lorentz transformation reads

$$E'_2 = \gamma E_2 - \gamma \beta p_{x2},$$

$$p'_{x2} = \gamma (-\beta E_2 + p_{x2}).$$

Inserting the above expressions for p_{x2} and p'_{x2} in the second equality thus gives

$$-E_2'\cos\theta' = -\gamma E_2\left(\beta - \frac{p_{x2}}{E_2}\right) = -\gamma E_2(\beta + \cos\theta).$$

The LHS of the first equality reads, using the expression of E'_2 from the Lorentz transformation as well as the expression of p_{x2} :

$$-(\gamma E_2 - \gamma \beta p_{x2})\cos \theta' = -\gamma E_2 \cos \theta' - \gamma \beta E_2 \cos \theta \cos \theta'.$$

Equating with the RHS, we get

$$-\gamma E_2 \cos \theta' - \gamma \beta E_2 \cos \theta \cos \theta' = -\gamma E_2 (\beta + \cos \theta)$$

and thus

$$\cos\theta(1-\beta\cos\theta) = \cos\theta' - \beta$$

which immediately leads to

$$\cos \theta = \frac{\cos \theta' - \beta}{1 - \beta \cos \theta'} \,.$$

(ii) In the SLAC setup, deduce that the photons are mainly emitted in the forward region in the laboratory frame ($\theta \sim \pi$.).

_____ Solution __

Since $\gamma \gg 1$, $\beta \to 1$ so that $\cos \theta \sim -1$, i.e. $\theta \sim \pi$.

(iii) What is the dominant angle of emission in the frame R'?

_____ Solution _____

Solving for $\cos \theta'$ gives

$$\cos \theta' = \frac{\cos \theta + \beta}{1 + \beta \cos \theta'} \,.$$

Thus, since $\beta \to 1$,

$$\cos\theta' \sim \frac{\cos\theta + 1}{1 + \cos\theta'} = 1$$

and thus again $\theta' \sim \pi$.

(iv) Suppose, just for the present question, that γ is arbitrary (therefore the electron may or may not be relativistic in the laboratory frame). If one detects the scattered photon at an angle $\theta = \pi$ in the laboratory frame, what would be the angle θ' in the rest frame of the electron? Comment.

_ Solution _____

Inserting $\theta = \pi$ in the previous relation gives

$$\cos\theta' = \frac{-1+\beta}{1-\beta} = -1$$

so that $\theta' = \pi$. This is expected from physical arguments: if the momentum of the photon has no transverse component (since $\theta = \pi$), this remains true after a longitudinal boost, so that the photon remains along the x axis. Thus, $\theta' = 0$ or $\theta' = \pi$. Besides, the boost cannot reverse its momentum by continuity with respect to the γ parameter (at $\gamma = 1$, i.e. R = R', and trivially $\theta = \theta'$) so that $\theta' = \pi$.

(v) Express the energy E_2 for $\theta = \theta' = \pi$. Compute its numerical value. Comment.

_ Solution ____

From question (i), the boost implies that for $\theta = \theta' = \pi$,

$$E_2' = \gamma(1-\beta)E_2 \sim \frac{\gamma}{2}E_2$$

since

$$\gamma^2 = \frac{1}{1 - \beta^2} \sim \frac{1}{\sqrt{2}\sqrt{1 - \beta}}$$

Thus, $E_2 \sim 2\gamma E'_2 \simeq 20.4 \cdot 10^9$ eV: the amplification factor for the photon energy is enormous, since $E_2/E_1 \simeq 4.4 \cdot 10^9$!!

4. Below is the photon energy spectrum produced at SLAC, in an experiment dedicated to charm photoproduction. Comment.

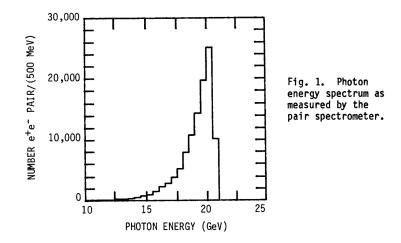


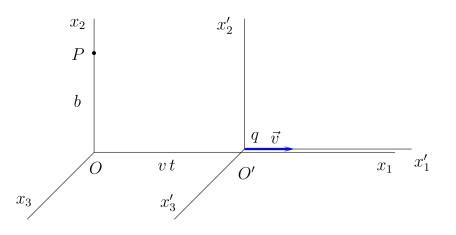
Figure from AIP Conference Proceedings 113, 419 (1984).

Solution.

The energy distribution has a clear peak, corresponding to the backscattering configuration. Its value is in accordance with our result for E_2 in this configuration.

2 Field of a charge in uniform rectilinear motion

We consider a charge q in uniform rectilinear motion at the speed \vec{v} in the observer's reference frame K. Let us note K' the rest frame of this charge, located at the origin O' of this one. We orientate the frames linked to K and K' so that the axes x_i and x'_i are collinear, with x_1 and x'_1 pointing in the direction of the motion of the charge, and thus $\vec{v} = v$, $(v \ge 0)$. We will note t and t' the times respectively in the reference frames K and K'. We suppose that at t = t' = 0, the origins O and O' of the two reference frames coincide. The observer is at a distance b from O in the reference frame K, oriented so that $\overrightarrow{OP} = b, \vec{u}_2$.



2.1 Preliminary question:

We consider two inertial reference frames K and K' so that K' is obtained from K by an arbitrary boost of velocity $\vec{v} = b\vec{e}ta = \vec{n}$. Let us denote $\{\vec{E}, \vec{B}\}$ and $\{\vec{E'}, \vec{B'}\}$ the electromagnetic fields respectively in these two reference frames. We recall the following relations allowing us to express $\{\vec{E'}, \vec{B'}\}$ using $\{\vec{E}, \vec{B}\}$:

$$\vec{E}' = (\vec{E} \cdot \vec{n})\vec{n} + \gamma \left[\vec{E} - (\vec{E} \cdot \vec{n})\vec{n}\right] + \gamma \vec{v} \wedge \vec{B}, \qquad (4)$$

$$\vec{B}' = (\vec{B} \cdot \vec{n})\vec{n} + \gamma \left[\vec{B} - (\vec{B} \cdot \vec{n})\vec{n}\right] - \gamma \vec{v} \wedge \vec{E}.$$
(5)

Express $\{\vec{E}, \vec{B}\}$ as a function of $\{\vec{E}', \vec{B}'\}$.

____ Solution _____

On should just write the inverse transformation, which amounts to reversing the direction of $\vec{\beta}$, i.e. de \vec{n} in the relations (4) and (5). On thus gets

$$\vec{E} = (\vec{E}' \cdot \vec{n})\vec{n} + \gamma \left[\vec{E}' - (\vec{E}' \cdot \vec{n})\vec{n}\right] - \gamma \vec{v} \wedge \vec{B}',$$

$$\vec{B} = (\vec{B}' \cdot \vec{n})\vec{n} + \gamma \left[\vec{B}' - (\vec{B}' \cdot \vec{n})\vec{n}\right] + \gamma \vec{v} \wedge \vec{E}'.$$

2.2 Fields

1. Show that in K', the electromagnetic fields at point P can be written as

$$E_1' = -\frac{qvt'}{4\pi r'^3}, (6)$$

$$E_2' = \frac{qb}{4\pi r'^3},\tag{7}$$

$$E'_{3} = 0,$$
 (8)

$$B = 0. (9)$$

Provide the expression of r' as a function of b and t'.

_____ Solution _____

The result is simply the expression of the Coulombian field of a static charge: zero magnetic field and electric field given by

$$\vec{E'} = q \frac{\vec{b} - \vec{v}t'}{\|\vec{b} - \vec{v}t'\|^3} = q \frac{\vec{b} - \vec{v}t}{r'^3}$$

with $r' = \sqrt{b^2 + (vt')^2}$.

2. Show that using the coordinates of K, this field also reads

$$E_1' = -\frac{q}{4\pi} \frac{v\gamma t}{(b^2 + v^2\gamma^2 t^2)^{3/2}},$$
(10)

$$E'_{2} = \frac{q}{4\pi} \frac{b}{\left(b^{2} + v^{2}\gamma^{2}t^{2}\right)^{3/2}}.$$
(11)

_____ Solution _____

It is enough to use the fact that $t' = \gamma(t - v x_1) = \gamma t$ since $x_1 = 0$ for the observer P.

3. Show that

$$E_1 = E'_1 = -\frac{q}{4\pi} \frac{v\gamma t}{\left(b^2 + v^2\gamma^2 t^2\right)^{3/2}},$$
(12)

$$E_2 = \gamma E'_2 = \frac{q}{4\pi} \frac{\gamma b}{\left(b^2 + v^2 \gamma^2 t^2\right)^{3/2}},$$
(13)

$$B_3 = \gamma \beta E_2' = \beta E_2. \tag{14}$$

_____ Solution _____

The relation which allows to express $\{\vec{E}, \vec{B}\}$ as a function of $\{\vec{E}', \vec{B}'\}$ here reads

$$\vec{E} = E'_1 \vec{u}_1 + \gamma E'_2 \vec{u}_2 \vec{B} = \gamma \vec{\beta} \wedge \vec{E}' = \gamma v \vec{u}_1 \wedge \vec{u}_2 E'_2 = \gamma v E'_2 \vec{u}_3$$

and thus

$$E_1 = E'_1$$

$$E_2 = \gamma E'_2$$

$$B_3 = \gamma v E'_2 = \beta E_2.$$

2.3 Non relativistic limit

- 4. Consider the limit $\gamma \to 1$.
- i) Discuss and comment the expression of the electric field \vec{E} in this limit.

_____ Solution _____

We have, by confusing $\vec{r} = \vec{b} - \vec{v}t$ and \vec{r}' in the non relativistic limit,

$$E_1 \sim \frac{q}{4\pi} \frac{-vt}{r^3}$$
$$E_2 \sim \frac{q}{4\pi} \frac{b}{r^3}$$

so that

$$\vec{E} = \frac{q}{4\pi} \frac{\vec{r}}{r^3}$$

in agreement with the expression of the Coulombian field in the absence of relativistic effect.

ii) Same questions for the magnetic field \vec{B} . The result obtained will be interpreted from the point of view of the law of Biot and Savart.

In this limit, one has

$$\vec{B} \sim \frac{qvb}{4\pi r^3} \vec{u}_3 \,.$$

The law of Biot and Savart

$$\vec{B}(\vec{x}) = \int d^3y \, \frac{\dot{j}(\vec{y}) \wedge (\vec{x} - \vec{y})}{4\pi \|\vec{x} - \vec{y}\|^3}$$

here gives, since $\vec{j}(\vec{y}) = q\delta^{(3)}(\vec{y} - \vec{v}t)\vec{v}$,

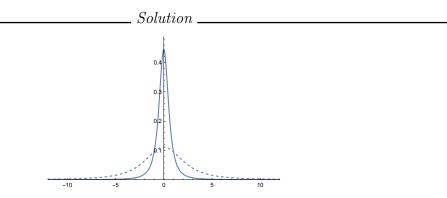
$$\vec{B}(\vec{b}) = \frac{q\vec{v} \wedge (\vec{b} - \vec{v}t)}{4\pi \|\vec{b} - \vec{v}t\|^3} = \frac{qvb}{4\pi r^3} \vec{u}_3 \,,$$

in accordance with the result obtained.

2.4 Study of relativistic effects

5. Time variation of the field transverse to the direction of motion of the particle E_2 .

i) Plot the transverse field E_2 as a function of vt, for $\gamma \sim 1$ and $\gamma \gg 1$.



Plot of the field E_2 as a function of vt. In continuous line, case $\gamma = 4$, in dashed line case $\gamma = 1$. We arbitrarily set $q = 4\pi$ to fix the vertical scale.

ii) Specify the possible extrema, and their temporal width.

The E_2 component is maximal at t=0. Its value is

$$E_{2\,max} = \frac{\gamma q}{4\pi b^2} \,.$$

For the electromagnetic field to have an appreciable amplitude compared to its maximum, it is necessary that

$$b^2 \gtrsim \gamma^2 v^2 t^2$$

so that

$$|t| \lesssim \frac{b}{\gamma v} = \Delta t \,.$$

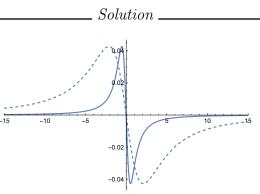
iii) Discuss the change in the shape of E_2 when we go from $\beta \ll 1$ to $\beta \to 1$.

```
_____ Solution _____
```

From the previous question, the peak of E_2 is more pronounced and narrower the larger γ is.

6. Time variation of the longitudinal field E_1 .

i) Study and plot the longitudinal field E_1 as a function of vt, for $\gamma \sim 1$ and $\gamma \gg 1$.



Curve of the field E_1 as a function of vt. In continuous, case $\gamma = 4$, in dashed line case $\gamma = 1$. We arbitrarily set $q = 4\pi$ to fix the vertical scale.

Denotes x = vt et $y = \gamma vt = \gamma x$. Then

$$E_1 = -\frac{q}{4\pi} \frac{y}{(b^2 + y^2)^{3/2}}$$

and

$$\frac{d|E_1|}{|E_1|} = \frac{dy}{y} - 3\frac{ydy}{b^2 + y^2}$$

vanishes for $3y^2 = b^2 + y^2$ so that $y = \pm b/\sqrt{2}$, i.e. $vt = \pm b/(\sqrt{2}\gamma)$. For these to values of y, which correspond to a maximum of $|E_1|$,

$$|E_1|_{max} = \frac{qb}{4\pi\sqrt{2}} \frac{1}{(b^2 + b^2/2)^{3/2}} = \frac{q}{4\pi b^2} \frac{2}{\sqrt{27}}$$

Note that these two extrema have an independent amplitude of γ .

ii) Specify the possible extremes.

_____ Solution _____

See the previous question.

iii) Discuss the change in the shape of E_1 when we go from $\beta \ll 1$ to $\beta \to 1$.

_____ Solution _____

The peaks of E_1 are all the more tightened as β is close to 1. Their amplitude does not change, contrary to the maximum of E_2 .

^{7.} Compare the amplitude of these two fields in the $\beta \rightarrow 1$ limit

Solution.

The transverse field has a maximum value typically γ times larger than the longitudinal field. In this limit, it thus dominates.

8. i) At t = 0, compare the electric field transverse to the direction of motion of the particle E_2 to its non-relativistic value.

_____ Solution _____

One has

$$E_2(t=0) = \frac{q}{4\pi} \frac{\gamma b}{(b^2)^{3/2}} = \frac{q}{4\pi} \frac{\gamma}{b^2} = \gamma E_{2 \text{ non relativistic}}.$$

ii) Give an order of magnitude of the duration of the electromagnetic pulse resulting from the passage of the charged particle.

_____ Solution _____

It is the temporal width $\Delta t = \frac{b}{\gamma v}$ of the peak of E_2 determined above.

iii) Discuss the effect of the longitudinal field.

_____ Solution _____

The longitudinal field E_1 varies very rapidly from a positive value (in the case where q is positive) to a negative value, and its average value is zero. This variation takes place over a time of the order of Δt . Over longer times, the effect of this field is therefore null.

iv) For a low temporal resolution (in front of a scale to be specified), show that the \vec{E} field behaves like a plane wave whose structure (polarization and direction of propagation) will be specified.

_____ Solution _____

For long averaging times with respect to Δt , the perceived field is identical to that of a transversally polarized plane wave propagating along u_1 : the longitudinal component has a negligible effect, and the transverse component is orthogonal to the magnetic field, both of identical amplitudes and orthogonal to \vec{u}_1 .

9. It is assumed that the moving charge is a particle of charge q = ze and that in P is an atomic electron of charge -e.

i) From the above, deduce an evaluation of the impulse transferred Δp to the electron during the passage of the mobile charge. Verify that the result is independent of γ .

_____ Solution _____

From the above, only the transverse field is to be considered. We have

$$\Delta p \sim zeE_2 \Delta t \sim -ze^2 \frac{b}{\gamma v} \frac{1}{4\pi} \frac{\gamma}{b^2} \sim -\frac{ze^2}{4\pi bv} \,.$$

which is independent of γ .

ii) Calculate this transferred pulse exactly.

___ Solution _____

One has

$$\int_{-\infty}^{+\infty} zeE_2(t) dt = -\frac{ze^2}{4\pi vb} \int_{-\infty}^{+\infty} \frac{\gamma vt/b}{[1 + (\gamma vt/b)^2]^{3/2}} = -\frac{ze^2}{4\pi vb} \int_{-\infty}^{+\infty} \frac{dx}{(1 + x^2)^{3/2}} \\ = -\frac{ze^2}{4\pi vb} \left[\frac{x}{\sqrt{1 + x^2}}\right]_{-\infty}^{+\infty} = -\frac{ze^2}{2\pi vb}.$$

Indeed,

$$\int^{X} \frac{dx}{(1+x^{2})^{3/2}} = -\int^{1/X} \frac{dt}{t^{2}} \left(1+\frac{1}{t^{2}}\right)^{-3/2} = -\int^{1/X} \frac{tdt}{(1+t^{2})^{3/2}} = \left(1+\frac{1}{X^{2}}\right)^{-1/2} = \frac{X}{\sqrt{1+X^{2}}}.$$