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Notes:
- The subject is deliberately long. Solving at least one of the two problems will ensure
a good mark!
- One may use the usual system of units in which c = 1 and ~ = 1.
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- Any drawing, at any stage, is welcome, and will be rewarded!

1 Photo-production of charm
The lightest meson containing a charmed quark is the D0. The production of a D0 meson
and of its anti-particle D̄0 can be done by using a beam of high energy photons which collide
with protons (immobile in the reference frame of the laboratory R) according to the reaction

γ p→ pD0 D̄0 . (1)

We denote as mp the proton mass and m0 the D0 mass (which is identical to the mass of the
D̄0).
1. We seek to determine the reaction threshold, i.e. the minimum energy of the photon for
which the reaction can take place. We will note Eγ the value of this energy in the laboratory
reference frame.
(i) Recall the definition of the center of mass reference frame R∗.

Solution

This is the frame in which the total momentum is zero.

(ii) At threshold, the momentum in R∗ of each produced particle vanishes. Write in R∗ the
sum of the incoming energies E∗γ + E∗p as a function of mp and m0.

Solution

The conservation of energy implies that E∗γ +E∗p should be identical to the sum of the energy
of the produced particles. Since they are at rest, those energies are equal to their masses.
Therefore,

E∗γ + E∗p = mp + 2m0 .
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(iii) Compute (pγ + pp)
2 in both R and R∗ frames and deduce the value of Eγ as a function

of mp and m0.

Solution

In the laboratory frame, ~pp = 0, therefore

(pγ + pp)
2 = m2

p + 2pγ · pp = m2
p + 2EγEp − 2~pγ · ~pp = m2

p + 2Eγmp = (E∗γ + E∗p)
2 = (mp + 2m0)

2

and thus

Eγ =
4m2

0 + 4mpm0

2mp

= 2m0 +
2m2

0

mp

.

(iv) Compute numerically Eγ.
We give mp = 938 MeV/c2 and m0 = 1865 MeV/c2.

Solution

One gets Eγ ' 11.15 GeV.

2. We want to create a beam of very energetic photons. For this we use the Compton back-
scattering : a beam of electrons of 30 GeV collides head-on with a monochromatic beam of
monochromatic beam of photons of wavelength λ1 = 266 nm (a laser). The kinematics of the
process is represented on the figure below in the laboratory frame R as well as in the frame
R′ in which the electron (bold point) is initially at rest. The incident photon is designated
by 1 and the scattered photon by 2.

R R′

(i) Write the conservation of the quadri-momentum in R′. Deduce the expression of the
energy E ′e of the scattered electron as a function of the energy E ′1 of the incoming photon,
of the energy E ′2 of the scattered photon and of the mass me of the electron.

Solution

In the frame R′, the energy of the incoming electron is me. The conservation of energy thus
reads

E ′1 +me = E ′2 + E ′e

so that

E ′e = E ′1 − E ′2 +me .
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(ii) Show that one has the following relation in R′:

E ′2 =
E ′1

1 +
E′

1

me
(1− cos θ′)

. (2)

Solution

Energy-momentum conservation reads

p′2 − p′1 = pei − pef

so that taking the square gives

(p′2 − p′1)2 = −2p′1 · p′2 = (pei − pef )2 = 2m2
e − 2meE

′
e

Using the conservation of energy, see the previous question, one thus gets

−2E ′1E
′
2(1− cos θ′) = −2meE

′
1 + 2meE

′
2

so that, as expected,

E ′2 =
E ′1

1 +
E′

1

me
(1− cos θ′)

.

(iii) Express the Lorentz factor γ when passing from the frame R to R′, and compute its
numerical value.
Compute the numerical values of E1, E

′
1 and E ′2(θ′ = π).

We give me = 0.511 MeV/c2 and h = 6.626 · 10−34 J.s.

Solution

One has Ee = γme, so that

γ =
Ee
me

=
30× 103

0.511
' 5.87 · 104 .

The Lorentz transformation reads

E ′1 = γ E1 − βγp1x = γ E1 + βγE1 = γ(1 + β)E1 ∼ 2γE1

p′1x = −βγE1 + γp1x = −βγE1 − γE1 = −γ(1 + βE1) ∼ −2γE1 .

Besides,

E ′2(θ
′ = π) =

E ′1

1 +
2E′

1

me

.
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Thus,

E1 =
h c

λ
' 7.47 · 10−19 J ' 4.66 eV ,

E ′1 ' 548 keV ,

and

E ′2 ' 174 keV .

3. Backscattering
(i) Justify that cos θ = −px2/E2 , and write a similar relation in R′. Using the Lorentz
transformation allowing to pass from R to R′, deduce that

cos θ =
cos θ′ − β

1− β cos θ′
. (3)

Solution

Since for the two photons E1 = ‖~p ′
1‖ and E2 = ‖~p ′

2‖, we have, by a simple projection on the
x axis:

px2 = −E2 cos θ and p′x2 = −E ′2 cos θ′ .

Besides, the Lorentz transformation reads

E ′2 = γE2 − γβpx2 ,
p′x2 = γ(−βE2 + px2) .

Inserting the above expressions for px2 and p′x2 in the second equality thus gives

−E ′2 cos θ′ = −γE2

(
β − px2

E2

)
= −γE2(β + cos θ) .

The LHS of the first equality reads, using the expression of E ′2 from the Lorentz transforma-
tion as well as the expression of px2:

−(γE2 − γβpx2) cos θ′ = −γE2 cos θ′ − γβE2 cos θ cos θ′ .

Equating with the RHS, we get

−γE2 cos θ′ − γβE2 cos θ cos θ′ = −γE2(β + cos θ)

and thus

cos θ(1− β cos θ) = cos θ′ − β

which immediately leads to

cos θ =
cos θ′ − β

1− β cos θ′
.
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(ii) In the SLAC setup, deduce that the photons are mainly emitted in the forward region
in the laboratory frame (θ ∼ π .).

Solution

Since γ � 1 , β → 1 so that cos θ ∼ −1 , i.e. θ ∼ π .

(iii) What is the dominant angle of emission in the frame R′?

Solution

Solving for cos θ′ gives

cos θ′ =
cos θ + β

1 + β cos θ′
.

Thus, since β → 1,

cos θ′ ∼ cos θ + 1

1 + cos θ′
= 1

and thus again θ′ ∼ π .

(iv) Suppose, just for the present question, that γ is arbitrary (therefore the electron may
or may not be relativistic in the laboratory frame). If one detects the scattered photon at
an angle θ = π in the laboratory frame, what would be the angle θ′ in the rest frame of the
electron? Comment.

Solution

Inserting θ = π in the previous relation gives

cos θ′ =
−1 + β

1− β
= −1

so that θ′ = π. This is expected from physical arguments: if the momentum of the photon
has no transverse component (since θ = π), this remains true after a longitudinal boost, so
that the photon remains along the x axis. Thus, θ′ = 0 or θ′ = π. Besides, the boost cannot
reverse its momentum by continuity with respect to the γ parameter (at γ = 1, i.e. R = R′,
and trivially θ = θ′) so that θ′ = π.

(v) Express the energy E2 for θ = θ′ = π. Compute its numerical value. Comment.

Solution
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From question (i), the boost implies that for θ = θ′ = π,

E ′2 = γ(1− β)E2 ∼
γ

2
E2

since

γ2 =
1

1− β2
∼ 1√

2
√

1− β
.

Thus, E2 ∼ 2γE ′2 ' 20.4 ·109 eV: the amplification factor for the photon energy is enormous,
since E2/E1 ' 4.4 · 109 !!

4. Below is the photon energy spectrum produced at SLAC, in an experiment dedicated to
charm photoproduction. Comment.

Figure from AIP Conference Proceedings 113, 419 (1984).

Solution

The energy distribution has a clear peak, corresponding to the backscattering configuration.
Its value is in accordance with our result for E2 in this configuration.

2 Field of a charge in uniform rectilinear motion
We consider a charge q in uniform rectilinear motion at the speed ~v in the observer’s refer-
ence frame K. Let us note K ′ the rest frame of this charge, located at the origin O′ of this
one. We orientate the frames linked to K and K ′ so that the axes xi and x′i are collinear,
with x1 and x′1 pointing in the direction of the motion of the charge, and thus ~v = v,
(v ≥ 0). We will note t and t′ the times respectively in the reference frames K and K ′.
We suppose that at t = t′ = 0, the origins O and O′ of the two reference frames coincide.
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The observer is at a distance b from O in the reference frame K, oriented so that
−→
OP = b, ~u2.

2.1 Preliminary question:

We consider two inertial reference frames K and K ′ so that K ′ is obtained from K by an
arbitrary boost of velocity ~v = ~beta = ~n. Let us denote { ~E, ~B} and { ~E ′, ~B′} the electro-
magnetic fields respectively in these two reference frames. We recall the following relations
allowing us to express { ~E ′, ~B′} using { ~E, ~B}:

~E ′ = ( ~E · ~n)~n+ γ
[
~E − ( ~E · ~n)~n

]
+ γ ~v ∧ ~B , (4)

~B′ = ( ~B · ~n)~n+ γ
[
~B − ( ~B · ~n)~n

]
− γ ~v ∧ ~E . (5)

Express { ~E, ~B} as a function of { ~E ′, ~B′}.

Solution

On should just write the inverse transformation, which amounts to reversing the direction
of ~β, i.e. de ~n in the relations (4) and (5). On thus gets

~E = ( ~E ′ · ~n)~n+ γ
[
~E ′ − ( ~E ′ · ~n)~n

]
− γ ~v ∧ ~B′ ,

~B = ( ~B′ · ~n)~n+ γ
[
~B′ − ( ~B′ · ~n)~n

]
+ γ ~v ∧ ~E ′ .

2.2 Fields

1. Show that in K ′, the electromagnetic fields at point P can be written as

E ′1 = − qvt′

4πr′3
, (6)

E ′2 =
qb

4πr′3
, (7)

E ′3 = 0 , (8)
~B = ~0 . (9)
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Provide the expression of r′ as a function of b and t′.

Solution

The result is simply the expression of the Coulombian field of a static charge: zero magnetic
field and electric field given by

~E ′ = q
~b− ~vt′

‖~b− ~vt′‖3
= q

~b− ~vt′

r′3

with r′ =
√
b2 + (vt′)2.

2. Show that using the coordinates of K, this field also reads

E ′1 = − q

4π

vγt

(b2 + v2γ2t2)3/2
, (10)

E ′2 =
q

4π

b

(b2 + v2γ2t2)3/2
. (11)

Solution

It is enough to use the fact that t′ = γ(t− v x1) = γt since x1 = 0 for the observer P.

3. Show that

E1 = E ′1 = − q

4π

vγt

(b2 + v2γ2t2)3/2
, (12)

E2 = γE ′2 =
q

4π

γb

(b2 + v2γ2t2)3/2
, (13)

B3 = γβE ′2 = βE2 . (14)

Solution

The relation which allows to express { ~E, ~B} as a function of { ~E ′, ~B′} here reads

~E = E ′1~u1 + γ E ′2~u2
~B = γ~β ∧ ~E ′ = γv~u1 ∧ ~u2E ′2 = γvE ′2~u3

and thus

E1 = E ′1
E2 = γE ′2
B3 = γvE ′2 = βE2 .
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2.3 Non relativistic limit

4. Consider the limit γ → 1.
i) Discuss and comment the expression of the electric field ~E in this limit.

Solution

We have, by confusing ~r = ~b− ~vt and ~r ′ in the non relativistic limit,

E1 ∼
q

4π

−vt
r3

E2 ∼
q

4π

b

r3

so that

~E =
q

4π

~r

r3

in agreement with the expression of the Coulombian field in the absence of relativistic effect.

ii) Same questions for the magnetic field ~B. The result obtained will be interpreted from the
point of view of the law of Biot and Savart.

Solution

In this limit, one has

~B ∼ qvb

4πr3
~u3 .

The law of Biot and Savart

~B(~x) =

∫
d3y

~j(~y) ∧ (~x− ~y)

4π‖~x− ~y‖3

here gives, since ~j(~y) = qδ(3)(~y − ~vt)~v ,

~B(~b) =
q~v ∧ (~b− ~vt)
4π‖~b− ~vt‖3

=
qvb

4πr3
~u3 ,

in accordance with the result obtained.
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2.4 Study of relativistic effects

5. Time variation of the field transverse to the direction of motion of the particle E2.
i) Plot the transverse field E2 as a function of vt, for γ ∼ 1 and γ � 1.

Solution

-10 -5 0 5 10

0.1

0.2

0.3

0.4

Plot of the field E2 as a function of vt. In continuous line, case γ = 4, in dashed line case
γ = 1. We arbitrarily set q = 4π to fix the vertical scale.

ii) Specify the possible extrema, and their temporal width.

Solution

The E2 component is maximal at t=0. Its value is

E2max =
γq

4πb2
.

For the electromagnetic field to have an appreciable amplitude compared to its maximum,
it is necessary that

b2 & γ2v2t2

so that

|t| . b

γv
= ∆t .

iii) Discuss the change in the shape of E2 when we go from β � 1 to β → 1.

Solution

From the previous question, the peak of E2 is more pronounced and narrower the larger γ
is.

6. Time variation of the longitudinal field E1.
i) Study and plot the longitudinal field E1 as a function of vt, for γ ∼ 1 and γ � 1.
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Solution

-15 -10 -5 5 10 15

-0.04

-0.02

0.02

0.04

Curve of the field E1 as a function of vt. In continuous, case γ = 4, in dashed line case γ = 1.
We arbitrarily set q = 4π to fix the vertical scale.
Denotes x = vt et y = γvt = γx. Then

E1 = − q

4π

y

(b2 + y2)3/2

and

d|E1|
|E1|

=
dy

y
− 3

ydy

b2 + y2

vanishes for 3y2 = b2 + y2 so that y = ±b/
√

2 , i.e. vt = ±b/(
√

2γ). For these to values of y,
which correspond to a maximum of |E1| ,

|E1|max =
qb

4π
√

2

1

(b2 + b2/2)3/2
=

q

4πb2
2√
27
.

Note that these two extrema have an independent amplitude of γ.

ii) Specify the possible extremes.

Solution

See the previous question.

iii) Discuss the change in the shape of E1 when we go from β � 1 to β → 1.

Solution

The peaks of E1 are all the more tightened as β is close to 1. Their amplitude does not
change, contrary to the maximum of E2.

7. Compare the amplitude of these two fields in the β → 1 limit
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Solution

The transverse field has a maximum value typically γ times larger than the longitudinal
field. In this limit, it thus dominates.

8. i) At t = 0, compare the electric field transverse to the direction of motion of the particle
E2 to its non-relativistic value.

Solution

One has

E2(t = 0) =
q

4π

γb

(b2)3/2
=

q

4π

γ

b2
= γE2non relativistic .

ii) Give an order of magnitude of the duration of the electromagnetic pulse resulting from
the passage of the charged particle.

Solution

It is the temporal width ∆t = b
γv

of the peak of E2 determined above.

iii) Discuss the effect of the longitudinal field.

Solution

The longitudinal field E1 varies very rapidly from a positive value (in the case where q is
positive) to a negative value, and its average value is zero. This variation takes place over a
time of the order of ∆t. Over longer times, the effect of this field is therefore null.

iv) For a low temporal resolution (in front of a scale to be specified), show that the ~E field
behaves like a plane wave whose structure (polarization and direction of propagation) will
be specified.

Solution

For long averaging times with respect to ∆t, the perceived field is identical to that of a
transversally polarized plane wave propagating along u1: the longitudinal component has a
negligible effect, and the transverse component is orthogonal to the magnetic field, both of
identical amplitudes and orthogonal to ~u1.
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9. It is assumed that the moving charge is a particle of charge q = ze and that in P is an
atomic electron of charge −e.
i) From the above, deduce an evaluation of the impulse transferred ∆p to the electron during
the passage of the mobile charge. Verify that the result is independent of γ .

Solution

From the above, only the transverse field is to be considered. We have

∆p ∼ zeE2∆t ∼ −ze2
b

γv

1

4π

γ

b2
∼ − ze2

4πbv
.

which is independent of γ.

ii) Calculate this transferred pulse exactly.

Solution

One has∫ +∞

−∞
zeE2(t) dt = − ze2

4πvb

∫ +∞

−∞

γvt/b

[1 + (γvt/b)2]3/2
= − ze2

4πvb

∫ +∞

−∞

dx

(1 + x2)3/2

= − ze2

4πvb

[
x√

1 + x2

]+∞
−∞

= − ze2

2πvb
.

Indeed,∫ X dx

(1 + x2)3/2
= −

∫ 1/X dt

t2

(
1 +

1

t2

)−3/2
= −

∫ 1/X tdt

(1 + t2)3/2
=

(
1 +

1

X2

)−1/2
=

X√
1 +X2

.
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