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Notes:
- The subject is deliberately long. Solving at least one of the two problems will ensure
a good mark!
- One may use the usual system of units in which c = 1 and ~ = 1.
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- Any drawing, at any stage, is welcome, and will be rewarded!

1 Green function and covariant gauge
1. Green function (scalar case)
Suppose we want to solve the equation

�ψ(x) = φ(x) , (1)

where φ(x) is an arbitrary known function, named source term, and Ψ(x) is the unknown
quantity we are looking for.
A very efficient way to solve this problem is to determine the Green’s function G(x) solution
of the auxiliary problem

�G(x) = δ(4)(x) . (2)

At this stage, the fact of being in a Minkowski space plays no role.
Show that the solution to the problem (1) is then formally obtained as a convolution of the
source with Green’s function:

ψ(x) =

∫
d4x′G(x− x′)φ(x′) . (3)

Solution

Indeed,

�xψ(x) =

∫
d4x′�xG(x− x′)φ(x′) =

∫
d4x′ δ(4)(x− x′)φ(x′) = φ(x) . (4)
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We will now extend the previous discussion to the case of a field of spin 1.
2. Transverse and longitudinal projectors.

For any momentum p (assumed to be non light-like), we introduce the operators L and T
defined through their matrix elements as

Lµν =
pµpν
p2

, (5)

T µν = gµν −
pµpν
p2

. (6)

What are their algebraic properties? One should study in detail the operators L2, T 2, LT, TL
and L+ T : compute their matrix elements and conclude about their nature.
Compute the action of the operators L and T on p. Deduce the kernels of these two opera-
tors. Finally, characterize more precisely the two operators L and T .

Solution

These two operators are projectors, since L2 = L and T 2 = T. Indeed,

LµρL
ρ
ν =

pµpρ
p2

pρpν
p2

=
pµpν
p2

= Lµν

and

TµρT
ρ
ν =

(
gµρ −

pµpρ
p2

)(
gρν −

pρpν
p2

)
= gµν −

pµpν
p2
− pµpν

p2
+ p2

pµpν
p2p2

= gµν −
pµpν
p2

= Tµν .

Their sum is equal to the identity, since

Lµν + Tµν = gµν .

Finally, they are orthogonal to each other, indeed

TµρL
ρ
ν =

(
gµρ −

pµpρ
p2

)
pρpν
p2

=
pµpν
p2
− p2pµpν

p2p2
= 0 ,

and similarly

LµρT
ρ
ν =

pµpρ
p2

(
gρν −

pρpν
p2

)
=
pµpν
p2
− p2pµpν

p2p2
= 0 .

Finally, one has

Lµνp
ν = pµ

and

T µνp
ν = 0 .

The projector T projects onto the hyperplane orthogonal to p, and L projects onto the vector
line generated by p. The kernel of T is therefore the vector line generated by p, and the kernel
of L is the hyperplane orthogonal to p.
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In the case of electromagnetism, Maxwell’s equation satisfied by the vector potential is
written as

�Aµ − ∂µ(∂.A) = jµ (7)

3. Show that it is not sufficient on its own to determine Aµ as a function of jµ. For that, one
should consider the Fourier conjugated equation, and show that one is forced to invert the
operator T. Conclude.

Solution

By Fourier transform we have

−p2Aµ + pµpνA
ν = j̃µ

thus

−p2
[
gµν −

pµpν
p2

]
Aν = j̃µ.

i.e.

−p2T µνAν = j̃µ.

Now the kernel of T is the vector line carried by p. It is therefore not invertible, since its
kernel is non zero.

To solve this problem, we have to give the photon a mass, or add a gauge-fixing term to the
Lagrangian. In the covariant Lorentz gauge, we add the term

Ljauge =
λ

2
(∂.A)2 , (8)

so that the full Lagrangian can be written as

Le.m = −1

4
F 2 − j.A+

λ

2
(∂.A)2 , (9)

4. Write the equations of motion of the corresponding Lagrangian.

Solution

The Euler-Lagrange equation reads

δLe.m
δAν

− ∂µ
δLe.m
δ∂µAν

= 0 .

One has

δLe.m
δ∂µAν

= −F µν + λ (∂ · A)gµν
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and

δLe.m
δAν

= −jν

so that

∂2Aν − ∂ν(∂ · A)− jν − λ∂ν(∂ · A) = 0

and thus finally

[�gµν − (1 + λ)∂µ∂ν ]A
ν = jν .

5. We are looking for the Green’s function GFµν . In comparison to Eq. (2), since the field Aµ
carries a Lorentz index, the right-hand-side should now contains, in addition to the Dirac
distribution, the identity in Minkowski space.

We denote

Mµν = p2gµν − (1 + λ)pµpν . (10)

(i) Explain why, in Fourier space, G̃Fµν is solution of the equation

MµνG̃F
ν
ρ = −gµρ , (11)

Solution

Replacing jµ by gµρ in the equation of motion obtained in the previous question, the result
is obvious after Fourier transforming each term.

(ii) We want now to solve Eq. (11). Using the two operators L and T , and calculating the
inverse operator of M , show that Green’s function, corresponding to the equation of motion
obtained in question 4 can be written in the form (using the so-called Feynman’s prescription
p2 → p2 + iε with ε→ 0+ to regulate the pole at p2 = 0, which play no role here),

GFµν(x− y, λ) = − 1

(2π)4

∫
d4p e−ip·(x−y)

1

p2 + iε

(
gµν −

1 + λ

λ

pµpν
p2

)
. (12)

Solution

The equation of motion is Fourier-transformed to

MµνG̃F
ν
ρ = −gµρ ,
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with

Mµν = p2 [(L+ T )µν − (1 + λ)Lµν ] = p2 [−λLµν + Tµν ] .

Using Feynman’s prescription, we have

(M−1)µν =

[
−1

λ
Lµν + Tµν

]
1

p2 + iε

=

[
−1

λ

pµpν
p2

+ gµν −
pµpν
p2

]
1

p2 + iε

=

[
gµν −

1 + λ

λ

pµpν
p2

]
1

p2 + iε
,

so that finally

GFµν(x− y, λ) = − 1

(2π)4

∫
d4p e−ip·(x−y)

1

p2 + iε

(
gµν −

1 + λ

λ

pµpν
p2

)
.

6. Discuss the limits λ → 0 and λ → ∞. In this second case, relate the properties of the
propagator obtained to the form of the Lagrangian.

Solution

Case λ→ 0: the propagator is not defined, so we are back to the original problem.
Case λ→∞: the propagator becomes

GFµν(x− y,∞) = − 1

(2π)4

∫
d4p e−ip·(x−y)

1

p2 + iε

(
gµν −

pµpν
p2

)
.

In this case, the propagator is automatically orthogonal to pµ. This is expected, since in
the Lagrangian, the gauge-fixing term is then multiplied by an infinite factor, requiring the
Lorenz gauge to be satisfied.

7. What is the contribution of the second term in the parenthesis in Eq. (12), when contracted
with a conserved current?

Solution

For a conserved current, pµj̃µ = 0, thus the second term does not contribute.
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2 Acceleration in special relativity
Consider a frame R′ traveling with speed β = v (c = 1) with respect to the frame R along
the x-axis.

We denote by ~u = (ux, uy, uz) the velocity of a particle in frame R and ~u ′ = (u′x, u
′
y, u
′
z) the

corresponding acceleration of this particle in frame R′.
1. Briefly show that

u′x =
ux − β
1− βux

(13)

u′y =
1

γ

uy
1− βux

(14)

u′z =
1

γ

uz
1− βux

. (15)

Solution

We have, through differentiation,{
dt′ = γ dt − γβ dx
dx′ = −γβ dt + γ dx

which gives

u′x =
dx′

dt′
=
−γβdt+ γdx

γdt− γβdx
=

ux − β
1− βux

.

Besides,

u′y =
dy′

dt′
=

dy

γdt− γβdy
=

1

γ

uy
1− βux

,

and similarly

u′z =
dz′

dt′
=

dz

γdt− γβdz
=

1

γ

uz
1− βux

.

2. The denote by ~a = (ax, ay, az) the velocity of a particle in frame R and ~a ′ = (a′x, a
′
y, a
′
z)

the corresponding velocity of in frame R′.
Show that

a′x =
ax

γ3(1− βux)3
(16)

a′y =
ay

γ2(1− βux)2
+

β uy ax
γ2(1− βux)3

(17)

a′z =
az

γ2(1− βux)2
+

β uz ax
γ2(1− βux)3

. (18)
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Solution

Starting from Eq. (13) we have

a′x =
d

dt

(
ux − β
1− βux

)
dt

dt′

and since

dt′ = γ dt− γβ dx

one has

dt′

dt
= γ(1− β ux) .

Thus

a′x =

(
ax

1− βux
+

ux − β
(1− βux)2

βax

)
1

γ(1− β ux)

=
ax(1− β2)

γ(1− βux)3
=

ax
γ3(1− βux)3

.

Similarly, starting from Eq. (14) we have

a′y =
1

γ

d

dt

(
uy

1− βux

)
1

γ(1− β ux)
=

(
ay

1− βux
+

βuy ax
(1− βux)2

)
1

γ2(1− β ux)

=
ay

γ2(1− βux)2
+

β uy ax
γ2(1− βux)3

.

Exchanging the role of y and z, one finally gets Eq. (18).

3. Starting from the 4-velocity

Uµ =
dXµ

dτ
= γ(u)(1, ~u) (19)

with γ(u) = 1/
√

1− u2, we define the 4-vector acceleration as

Aµ =
dUµ

dτ
. (20)

(i) Prove that

dγ(u)

dt
= γ(u)3~u · ~a . (21)

Solution
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From

γ(u) =
1√

1− u2

one gets

dγ(u)

dt
= ~u · d~u

dt

1

(1− u2)3/2
= γ(u)3~u · ~a .

(ii) Show that

Aµ = (γ4~u · ~a, γ2~a+ γ4(~u · ~a)~u) , (22)

where γ = γ(u).

Solution

The chain rule gives

Aµ =
dUµ

dt

dt

dτ
= γ(u)

dUµ

dt
= γ(u)

d

dt
[γ(u)(1, ~u)] = γ(u)

[
dγ(u)

dt
(1, ~u) + γ(u)

(
0,
d~u

dt

)]
= (γ4~u · ~a, γ4(~u · ~a)~u+ γ2~a) .

(iii) Show that Aµ is in general a space-like 4-vector.

Hint: work in the rest frame.

Solution

In the rest frame, ~u = 0 and γ = 1, thus

Aµ = (0,~a) ,

so that A2 < 0 (except if ~a = 0).

4. Orthogonality of U and A.

(i) What is the value of U2? Deduce that U and A are orthogonal.

Solution

We have U2 = 1 so that

0 =
dU2

dτ
= 2U · dU

dτ
= U · A .
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(ii) Obtain this result by working in an appropriate frame.

Solution

In the rest frame, Uµ = (1,~0) and Aµ = (0,~a), so obviously U · A = 0. Being true in this
frame, this is valid in any frame.
Note: one can of course obtain the fact that U and A are orthogonal by directly computing
U · A:

U · A = γ(1, ~u) · (γ4~u · ~a, γ2~a+ γ4(~u · ~a)~u)

= γ3(γ2~u · ~a− ~u · ~a− u2γ2(~u · ~a))

= γ3(γ2(1− u2)~u · ~a− ~u · ~a) = 0 .

FIN !
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