Particles

Exam

January 4th 2023
Documents allowed
Notes:

- One may use the usual system of units in which $c=1$ and $\hbar=1$.
- Space coordinates may be freely denoted as (x, y, z) or $\left(x^{1}, x^{2}, x^{3}\right)$.
- Any drawing, at any stage, is welcome, and will be rewarded!

$1 \quad$ Study of the decay $\pi^{0} \rightarrow \gamma \gamma$

1. Express the angle θ between the momenta of the two photons in the reaction $\pi^{0} \rightarrow \gamma \gamma$ as a function of their energies and of the π^{0} mass.
Hint: compute the scalar product of the 3-momenta of the two photons.
\qquad
The conservation of momentum implies that

$$
\vec{p}=\vec{p}_{1}+\vec{p}_{2} .
$$

Besides, denoting the relative angle between the two photons as θ, we have

$$
\vec{p}^{2}=\vec{p}_{1}^{2}+\vec{p}_{2}^{2}+\vec{p}_{1} \cdot \vec{p}_{2}=E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2} \cos \theta
$$

where we have used the fact that $\left\|\vec{p}_{1}\right\|=E_{1}$ and $\left\|\vec{p}_{2}\right\|=E_{2}$. Since

$$
\vec{p}^{2}=E^{2}-m^{2}=E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2}-m^{2}
$$

one finally gets

$$
\cos \theta=\frac{2 E_{1} E_{2}-m^{2}}{2 E_{1} E_{2}}
$$

2. Compute separately $\cos \theta_{1}$ and $\cos \theta_{2}$, where θ_{1} and θ_{2} are the angle of the 3 -momenta of each photon with respect to the direction of the incoming pion. One should obtain

$$
\begin{equation*}
\cos \theta_{i}=\frac{E-m^{2} /\left(2 E_{i}\right)}{\sqrt{E^{2}-m^{2}}} \tag{1}
\end{equation*}
$$

Indirect solution:
The projection of the momenta on the π^{0} axis gives

$$
E_{1} \cos \theta_{1}+E_{2} \cos \theta_{2}=\|\vec{p}\|=\sqrt{E^{2}-m^{2}}
$$

while the conservation of momentum on the transverse axis gives

$$
E_{1} \sin \theta_{1}=E_{2} \sin \theta_{2} .
$$

Thus, one gets

$$
\cos ^{2} \theta_{2}=1-\sin ^{2} \theta_{2}=1-\frac{E_{1}^{2}}{E_{2}^{2}} \sin ^{2} \theta_{1}
$$

so that (among the two photons, at least one of them should have a positive $\cos \theta_{i}$, due to overall conservation of momenta along the axis of the π^{0}, so let us label photon 2 to be the one with $\cos \theta_{2} \geq 0$)

$$
\cos \theta_{2}=\frac{\sqrt{E_{2}^{2}-E_{1}^{2} \sin ^{2} \theta_{1}}}{E_{2}}=\frac{\sqrt{E_{2}^{2}-E_{1}^{2}\left(1-\cos ^{2} \theta_{1}\right)}}{E_{2}}
$$

This leads to

$$
E_{1} \cos \theta_{1}+\sqrt{E_{2}^{2}-E_{1}^{2}\left(1-\cos ^{2} \theta_{1}\right)}=\sqrt{E^{2}-m^{2}}
$$

or

$$
\sqrt{E_{2}^{2}-E_{1}^{2}\left(1-\cos ^{2} \theta_{1}\right)}=\sqrt{E^{2}-m^{2}}-E_{1} \cos \theta_{1}
$$

which after squaring gives

$$
E_{2}^{2}-E_{1}^{2}\left(1-\cos ^{2} \theta_{1}\right)=E^{2}-m^{2}+E_{1}^{2} \cos ^{2} \theta_{1}-2 \sqrt{E^{2}-m^{2}} E_{1} \cos \theta_{1}
$$

and thus, using $E=E_{1}+E_{2}$,

$$
E_{2}^{2}-E_{1}^{2}=E_{1}^{2}+E_{2}^{2}+2 E_{1} E_{2}-m^{2}+E_{1}^{2} \cos ^{2} \theta_{1}-2 \sqrt{E^{2}-m^{2}} E_{1} \cos \theta_{1}
$$

which leads finally to

$$
\cos \theta_{1}=\frac{E-m^{2} /\left(2 E_{1}\right)}{\sqrt{E^{2}-m^{2}}}
$$

More direct method:
since $p-p_{1}=p_{2}$,

$$
\left(p-p_{1}\right)^{2}=p^{2}-2 p \cdot p_{1}+p_{1}^{2}=m^{2}-2 E E_{1}+2\|\vec{p}\| E_{1} \cos \theta_{1}=p_{2}^{2}=0
$$

and thus

$$
m^{2}-2 E E_{1}+2 \sqrt{E^{2}-m^{2}} E_{1} \cos \theta_{1}=0
$$

This implies finally that

$$
\cos \theta_{1}=\frac{E-m^{2} /\left(2 E_{1}\right)}{\sqrt{E^{2}-m^{2}}} .
$$

Similarly, exchanging the role of photon 1 and 2, one gets

$$
\cos \theta_{2}=\frac{E-m^{2} /\left(2 E_{2}\right)}{\sqrt{E^{2}-m^{2}}}
$$

Direct solution:
From $p_{2}=p-p-1$ one gets
$p_{2}^{2}=0=\left(p-p_{1}\right)^{2}=m^{2}-2 p \cdot p_{1}=m^{2}-2 E E_{1}+2\|\vec{p}\| E_{1} \cos \theta_{1}=2 \sqrt{E^{2}-m^{2}} E_{1} \cos \theta_{1}$
and thus

$$
\cos \theta_{1}=\frac{E-m^{2} /\left(2 E_{1}\right)}{\sqrt{E^{2}-m^{2}}}
$$

3. From the above expression, after computing $\sin \theta_{i}$, finally check your result for $\cos \theta$.

Solution

From the above expression obtained for $\cos \theta_{i}$, one gets

$$
\sin \theta_{i}=\sqrt{1-\cos ^{2} \theta_{i}}=\left[1-\frac{\left(E-m^{2} /\left(2 E_{i}\right)\right)^{2}}{E^{2}-m^{2}}\right]^{1 / 2}=\sqrt{\frac{4 E_{1} E_{2}-m^{2}}{E^{2}-m^{2}}} \frac{m}{2 E_{i}}
$$

Thus,

$$
\begin{aligned}
\cos \left(\theta_{1}+\theta_{2}\right) & =\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \\
& =\frac{1}{E^{2}-m^{2}}\left[\left(E-\frac{m^{2}}{2 E_{1}}\right)\left(E-\frac{m^{2}}{2 E_{2}}\right)-\left(4 E_{1} E_{2}-m^{2}\right) \frac{m^{2}}{4 E_{1} E_{2}}\right] \\
& =\frac{1}{\left(E^{2}-m^{2}\right) 4 E_{1} E_{2}}\left[\left(2 E_{1} E-m^{2}\right)\left(2 E_{2} E-m^{2}\right)-\left(4 E_{1} E_{2}-m^{2}\right) m^{2}\right] \\
& =\frac{1}{\left(E^{2}-m^{2}\right) 4 E_{1} E_{2}}\left[4 E_{1} E_{2} E^{2}-2 m^{2} E^{2}-4 E_{1} E_{2} m^{2}+2 m^{4}\right] \\
& =\frac{2 E_{1} E_{2}-m^{2}}{2 E_{1} E_{2}}
\end{aligned}
$$

as expected.
4. Detailed kinematics of the two photons
(i) Study in detail the variation of θ as a function of the fraction of the total energy carried by one of the photon. Give in particular the minimal value $\theta_{\text {min }}$ of this relative angle.
(ii) Discuss the range of energy covered by each photon.

Let us introduce the fraction x of the total energy carried by photon 1 , so that $E_{1}=x E$ and $E_{2}=(1-x) E$. Thus,

$$
\cos \theta=1-\frac{m^{2}}{E^{2}} \frac{1}{2 x(1-x)}
$$

Introducing $y=x(1-x), \cos \theta$ is clearly an increasing function y. It is thus maximal for $y=1 / 4$, i.e. $x=1 / 2$. The maximal value of $\cos \theta$ is then $c=1-2 \frac{m^{2}}{E^{2}}$, so that the minimal angle between the two photons is

$$
\theta_{\min }=\arccos \left(1-2 \frac{m^{2}}{E^{2}}\right)
$$

One gets the following variations:

x	0	x_{+}	$1 / 2$	x_{-}	1
y	0	\vdots	$1 / 4$		0
$\cos \theta$					

Indeed, $\cos \theta$ should be in the interval $[-1,1)$. The upper constraint is obviously satisfied. The lower one gives

$$
1-\frac{m^{2}}{E^{2}} \frac{1}{2 x(1-x)} \geq-1
$$

i.e.

$$
x^{2}-x+\frac{m^{2}}{4 E^{2}} \leq 0
$$

so that $x \in\left[x_{-}, x_{+}\right]$with

$$
x_{ \pm}=\frac{1}{2} \pm \frac{1}{2} \sqrt{1-\frac{m^{2}}{E^{2}}} .
$$

Thus, both E_{1} and E_{2} are in the range $\left[x_{-} E, x_{+} E\right]$. When the border of this domain is reached, $\theta=\pi$: the two photons are emitted back-to-back.
5. Discuss the two extreme limits $E=m$ and $E \gg m$.

Case $E=m$:
In this case, we are in the CMS of the π^{0}. Thus one gets $\theta=\pi$. Indeed, inspecting the equation written in question (2) (the one before using $E=E_{1}+E_{2}$) shows that $E_{1}=E_{2}$, thus $E_{1}=E_{2}=m / 2$ so that $\cos \theta=-1$: the two photons share the energy and are emitted back-to-back.

Case $E \gg m$:
From the relation

$$
\cos \theta=1-\frac{m^{2}}{E^{2}} \frac{1}{2 x(1-x)}
$$

one immediately gets that $\cos \theta \rightarrow 1$: the two photon are emitted collinearly, in the direction of the decaying π^{0}.

2 Noether theorem

2.1 Current associated to Lagrangians independent of the fields

2.1.1 Scalar case

1. Consider the Lagrangian of a real massless scalar field.

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right) . \tag{2}
\end{equation*}
$$

(i) Write the Noether current associated to the transformation

$$
\begin{equation*}
\phi \rightarrow \phi+\alpha \tag{3}
\end{equation*}
$$

where α is a constant, and explain why $j^{\mu}=\partial^{\mu} \phi$ is conserved.

Solution

The Lagrangian (2) is obviously invariant under the transformation (3). Thus, the Noether current

$$
j^{\mu}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \phi\right)} \delta \phi=\left(\partial^{\mu} \phi\right) \alpha
$$

is conserved, and since this is valid for any constant α, this implies that

$$
j^{\mu}=\partial^{\mu} \phi
$$

is conserved.
(ii) Check directly that this current is conserved.

One gets

$$
\partial_{\mu} j^{\mu}=\square \phi=0
$$

after using the Euler-Lagrange equation which is just the Klein-Gordon equation.
2. Suppose that the Lagrangian contains a mass term, i.e.

$$
\begin{equation*}
\mathcal{L}_{m}=\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} . \tag{4}
\end{equation*}
$$

(i) What appends to the above current?

Solution

With a mass term, the Lagrangian is not anymore invariant under the transformation (3), and thus the Noether current is not anymore conserved.
(ii) Compute its derivative in terms of ϕ and m. Comment.
\qquad
One has

$$
\partial_{\mu} j^{\mu}=\square \phi=-m^{2} \phi
$$

after using the Euler-Lagrange equation which now reads

$$
\square \phi+m^{2} \phi=0 .
$$

Obviously, as expected this vanishes in the limit $m=0$.

2.1.2 The case of QED

3. In the case of QED for free photons without matter, we know that the Lagrangian reads

$$
\begin{equation*}
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{6}
\end{equation*}
$$

(i) By considering the global transformation

$$
\begin{align*}
\delta x^{\mu} & =0 \tag{7}\\
\delta A^{\mu}(x) & =\text { constant }=\delta A^{\mu}
\end{align*}
$$

show that the current

$$
\begin{equation*}
\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} A_{\nu}\right)} \tag{8}
\end{equation*}
$$

is conserved.

Solution

The Lagrangian is invariant under the transformation (7). Thus, the current

$$
j^{\mu}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} A_{\nu}\right)} \delta A_{\nu}
$$

is conserved, for any constant δA^{μ}. This thus leads to the conservation of the current

$$
\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} A_{\nu}\right)}
$$

(ii) Deduce that $F^{\mu \nu}$ is conserved. Comment.

The antisymmetry of $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ allows to rewrite (5) as

$$
\mathcal{L}_{Q E D}=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)=-\frac{1}{2}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \partial^{\mu} A^{\nu}
$$

which leads to

$$
\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} A_{\nu}\right)}=-F^{\mu \nu}
$$

The conservation of the current (8) then reads

$$
\partial_{\mu} F^{\mu \nu}=0,
$$

which is nothing more than the first set of Maxwell's equations in the vacuum.
4. The QED Lagrangian of photons coupled to an external current reads

$$
\begin{equation*}
\mathcal{L}_{Q E D}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-j^{\mu} A_{\mu} \tag{9}
\end{equation*}
$$

(i) What appends to the above current?
\qquad
With the presence of a term involving the coupling of an external current to the field A_{μ}, the Lagrangian is not anymore invariant under the transformation (7), and thus the Noether current is not anymore conserved.
(ii) Compute its derivative. Comment.
\qquad
One has

$$
-\partial_{\mu} F^{\mu \nu}=-j^{\nu}
$$

after using the Euler-Lagrange equation which are just the first set of Maxwell's equation. Obviously, as expected this vanishes in the limit $j^{\mu}=0$.

2.2 Multiple symmetry generators

1. Preliminary

Consider the set $U(N)$, made of $N \times N$ matrices with complex coefficients satisfying

$$
\begin{equation*}
U^{\dagger} \cdot U=U \cdot U^{\dagger}=\operatorname{Id} \tag{10}
\end{equation*}
$$

where Id is the $N \times N$ identity matrix.
(i) Show that the determinant of these matrices is a phase factor.
\qquad
From (10) one gets

$$
|\operatorname{det} U|^{2}=1
$$

which shows that $|\operatorname{det} U|=1$ and thus that $\operatorname{det} U$ is phase factor.
(ii) Consider a matrix U of $U(N)$, expanded in the vicinity of Id. For convenience, this expansion is written in the form

$$
\begin{equation*}
U=\operatorname{Id}+i T+o(T) \tag{11}
\end{equation*}
$$

where $\|T\| \ll 1$ (the precise definition of this norm plays no role here, one should just interpret this as T small with respect to Id).
Show that the matrices T are hermitian.

From (10) one gets

$$
(\operatorname{Id}+i T+o(T))\left(\operatorname{Id}-i T^{\dagger}+o(T)\right)=\operatorname{Id}+i\left(T-T^{\dagger}\right)+o(T)=\operatorname{Id}
$$

so that $T=T^{\dagger}$, hence the result.
(iii) Show that there are N^{2} independent $N \times N$ hermitian matrices. In the rest of this exercise, they will be labeled by an index $a \in\left\{1, \cdots, N^{2}\right\}$. A given chosen set of N^{2} independent T matrices is called a set of $U(N)$ generators.

A hermitian matrix is completely fixed by the value of $(N-1) N / 2$ complex coefficients (the non-diagonal terms) and N real coefficients (the diagonal terms). Since any complex number is a set of two real numbers (its real and imaginary parts), this means $(N-1) N+N=N^{2}$ real coefficients.
(iv) The subset $S U(N)$ of $U(N)$ matrices is made of matrices of determinant unity. Besides, one can show that for any $N \times N$ (diagonalizable) matrix X,

$$
\begin{equation*}
\operatorname{det}(\operatorname{Id}+\epsilon X)=1+\epsilon \operatorname{Tr} X+o(\epsilon) . \tag{12}
\end{equation*}
$$

Deduce the constraint which should be satisfied by the generators of $S U(N)$, and then the number of generators of $S U(N)$.

Solution

The constraint $\operatorname{det} U=1$ obviously leads to $\operatorname{Tr} X=0$. This adds one constraint on the real coefficients fixing the value of X, so that there are $N^{2}-1$ independent generators of $S U(N)$.
2. One can prove that in the case of $U(N)$ (this is valid for any compact group), the whole connected component of Id can be obtained by exponentiating a suitable linear combination of the generators or $U(N)$. It means that any $U(N)$ matrix which belongs to the connected component of Id reads

$$
\begin{equation*}
U=e^{i \omega^{a} T^{a}} \tag{13}
\end{equation*}
$$

where ω^{a} are N^{2} real numbers, and T^{a} are the generators.
Consider the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \Phi\right)^{\dagger} \partial_{\mu} \Phi-m^{2} \Phi^{\dagger} \Phi \tag{14}
\end{equation*}
$$

where

$$
\Phi=\left(\begin{array}{c}
\varphi_{1} \tag{15}\\
\varphi_{2} \\
\vdots \\
\varphi_{N}
\end{array}\right)
$$

is a column vector made of N complex scalar fields.
(i) Show that the Lagrangian is symmetric under the variation

$$
\begin{align*}
\Phi & \rightarrow e^{i \omega^{a} T^{a}} \Phi \tag{16}\\
\Phi^{\dagger} & \rightarrow \Phi^{\dagger} e^{-i \omega^{a} T^{a}} \tag{17}
\end{align*}
$$

\qquad
This is obvious from the definition of $U(N)$.
(ii) Write the corresponding set of N^{2} conserved currents.

Consider the infinitesimal transformations

$$
\begin{align*}
\delta \Phi & =i \omega^{a} T^{a} \Phi \tag{18}\\
\delta \Phi^{\dagger} & =-\Phi^{\dagger} i \omega^{a} T^{a} \tag{19}
\end{align*}
$$

where $\|\omega\| \ll 1$. The Noether theorem reads

$$
\begin{aligned}
j^{\mu} & =\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \Phi\right)} \delta \Phi+\delta \Phi^{\dagger} \frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \Phi^{\dagger}\right)} \\
& =\left(\partial^{\mu} \Phi^{\dagger}\right)\left(i \omega^{a} T^{a} \Phi\right)-\left(\Phi^{\dagger} i \omega^{a} T^{a}\right)\left(\partial^{\mu} \Phi\right) \\
& =-i\left(\Phi^{\dagger} T^{a} \partial^{\mu} \Phi-\left(\partial^{\mu} \Phi^{\dagger}\right) T^{a} \Phi\right) \omega^{a}
\end{aligned}
$$

which implies that the family of N^{2} currents

$$
j^{a \mu}=-i\left(\Phi^{\dagger} T^{a} \partial^{\mu} \Phi-\left(\partial^{\mu} \Phi^{\dagger}\right) T^{a} \Phi\right)
$$

are conserved.
(iii) Discuss the special case $N=1$.

Solution

\qquad
When $N=1$ we recover the usual $U(1)$ current

$$
j^{\mu}=-i\left(\Phi^{*} \partial^{\mu} \Phi-\left(\partial^{\mu} \Phi^{*}\right) \Phi\right)
$$

since there is just one generator, the number 1 which is the only 1×1 hermitian matrix.
3. Using the fact that each field φ_{i} can be decomposed into its real and imaginary part, one can rewrite, adapting the notation accordingly,

$$
\Phi=\left(\begin{array}{c}
\varphi_{1}+i \varphi_{2} \tag{20}\\
\varphi_{3}+i \varphi_{4} \\
\vdots \\
\varphi_{2 N-1}+i \varphi_{2 N}
\end{array}\right)
$$

(i) Show that the Lagrangian can be rewritten as

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \tilde{\Phi}\right)^{T} \partial^{\mu} \tilde{\Phi}-m^{2} \tilde{\Phi}^{T} \tilde{\Phi} \tag{21}
\end{equation*}
$$

with

$$
\tilde{\Phi}=\left(\begin{array}{c}
\varphi_{1} \tag{22}\\
\varphi_{2} \\
\vdots \\
\varphi_{2 N}
\end{array}\right)
$$

This is obvious from the fact that $\varphi_{2 i-1}^{2}+\varphi_{2 i}^{2}=\left|\varphi_{2 i-1}+i \varphi_{2 i}\right|^{2}$.
(ii) Deduce that the symmetry of the Lagrangian is in fact $O(2 N)$.
\qquad Solution \qquad
This comes from the fact that $O(2 N)$ is the set of transformation which leaves the norm of $\tilde{\Phi}$ invariant. This also leaves the norm of $\partial_{\mu} \tilde{\Phi}$ invariant.
(iii) Repeating the above discussion made for $U(N)$, see question 1., characterize the generators of $O(2 N)$ and find their number. Write the corresponding Noether currents.
\qquad
A Taylor expansion of the constraint

$$
A^{T} \cdot A=A \cdot A^{T}=\mathrm{Id}
$$

gives now

$$
T+T^{T}=0
$$

i.e. the generators are made of $(2 N) \times(2 N)$ antisymmetric matrices. These are fixed by the knowledge of $(2 N)(2 N-1) / 2=N(2 N-1)$ real coefficients. Denoting as X^{a} a set of $N(2 N-1)$ independent $(2 N) \times(2 N)$ antisymmetric matrices, the Noether currents now read

$$
j^{a \mu}=-i \tilde{\Phi}^{T} X^{a} \partial^{\mu} \tilde{\Phi}
$$

