
M1 General Physics 2022-2023
Particles
Exam

January 4th 2023

Documents allowed

Notes:
- One may use the usual system of units in which c = 1 and ~ = 1.
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- Any drawing, at any stage, is welcome, and will be rewarded!

1 Study of the decay π0 → γγ

1. Express the angle θ between the momenta of the two photons in the reaction π0 → γγ as
a function of their energies and of the π0 mass.
Hint: compute the scalar product of the 3-momenta of the two photons.

Solution

The conservation of momentum implies that

~p = ~p1 + ~p2 .

Besides, denoting the relative angle between the two photons as θ, we have

~p 2 = ~p 2
1 + ~p 2

2 + ~p1 · ~p2 = E2
1 + E2

2 + 2E1E2 cos θ

where we have used the fact that ‖~p1‖ = E1 and ‖~p2‖ = E2. Since

~p 2 = E2 −m2 = E2
1 + E2

2 + 2E1E2 −m2

one finally gets

cos θ =
2E1E2 −m2

2E1E2

.

2. Compute separately cos θ1 and cos θ2, where θ1 and θ2 are the angle of the 3-momenta of
each photon with respect to the direction of the incoming pion. One should obtain

cos θi =
E −m2/(2Ei)√

E2 −m2
. (1)

Solution
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Indirect solution:
The projection of the momenta on the π0 axis gives

E1 cos θ1 + E2 cos θ2 = ‖~p‖ =
√
E2 −m2

while the conservation of momentum on the transverse axis gives

E1 sin θ1 = E2 sin θ2 .

Thus, one gets

cos2 θ2 = 1− sin2 θ2 = 1− E2
1

E2
2

sin2 θ1

so that (among the two photons, at least one of them should have a positive cos θi, due to
overall conservation of momenta along the axis of the π0, so let us label photon 2 to be the
one with cos θ2 ≥ 0)

cos θ2 =

√
E2

2 − E2
1 sin2 θ1

E2

=

√
E2

2 − E2
1(1− cos2 θ1)

E2

.

This leads to

E1 cos θ1 +
√
E2

2 − E2
1(1− cos2 θ1) =

√
E2 −m2

or √
E2

2 − E2
1(1− cos2 θ1) =

√
E2 −m2 − E1 cos θ1

which after squaring gives

E2
2 − E2

1(1− cos2 θ1) = E2 −m2 + E2
1 cos2 θ1 − 2

√
E2 −m2E1 cos θ1

and thus, using E = E1 + E2,

E2
2 − E2

1 = E2
1 + E2

2 + 2E1E2 −m2 + E2
1 cos2 θ1 − 2

√
E2 −m2E1 cos θ1

which leads finally to

cos θ1 =
E −m2/(2E1)√

E2 −m2
.

More direct method:
since p− p1 = p2 ,

(p− p1)2 = p2 − 2p · p1 + p21 = m2 − 2EE1 + 2‖~p‖E1 cos θ1 = p22 = 0

and thus

m2 − 2EE1 + 2
√
E2 −m2E1 cos θ1 = 0 .
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This implies finally that

cos θ1 =
E −m2/(2E1)√

E2 −m2
.

Similarly, exchanging the role of photon 1 and 2, one gets

cos θ2 =
E −m2/(2E2)√

E2 −m2
.

Direct solution:
From p2 = p− p− 1 one gets

p22 = 0 = (p− p1)2 = m2 − 2p · p1 = m2 − 2EE1 + 2‖~p ‖E1 cos θ1 = 2
√
E2 −m2E1 cos θ1

and thus

cos θ1 =
E −m2/(2E1)√

E2 −m2
.

3. From the above expression, after computing sin θi, finally check your result for cos θ.

Solution

From the above expression obtained for cos θi, one gets

sin θi =
√

1− cos2 θi =

[
1− (E −m2/(2Ei))

2

E2 −m2

]1/2
=

√
4E1E2 −m2

E2 −m2

m

2Ei
.

Thus,

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

=
1

E2 −m2

[(
E − m2

2E1

)(
E − m2

2E2

)
− (4E1E2 −m2)

m2

4E1E2

]
=

1

(E2 −m2)4E1E2

[
(2E1E −m2)(2E2E −m2)− (4E1E2 −m2)m2

]
=

1

(E2 −m2)4E1E2

[
4E1E2E

2 − 2m2E2 − 4E1E2m
2 + 2m4

]
=

2E1E2 −m2

2E1E2

as expected.

4. Detailed kinematics of the two photons

(i) Study in detail the variation of θ as a function of the fraction of the total energy carried
by one of the photon. Give in particular the minimal value θmin of this relative angle.
(ii) Discuss the range of energy covered by each photon.
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Solution

Let us introduce the fraction x of the total energy carried by photon 1, so that E1 = xE and
E2 = (1− x)E. Thus,

cos θ = 1− m2

E2

1

2x(1− x)

Introducing y = x(1 − x), cos θ is clearly an increasing function y. It is thus maximal for
y = 1/4, i.e. x = 1/2. The maximal value of cos θ is then c = 1− 2m

2

E2 , so that the minimal
angle between the two photons is

θmin = arccos

(
1− 2

m2

E2

)
.

One gets the following variations:

x

y

cos θ

0 1/2 1

0 1/4 0

cc

x+

−1

x−

−1

Indeed, cos θ should be in the interval [−1, 1). The upper constraint is obviously satisfied.
The lower one gives

1− m2

E2

1

2x(1− x)
≥ −1

i.e.

x2 − x+
m2

4E2
≤ 0 ,

so that x ∈ [x−, x+] with

x± =
1

2
± 1

2

√
1− m2

E2
.

Thus, both E1 and E2 are in the range [x−E, x+E]. When the border of this domain is
reached, θ = π: the two photons are emitted back-to-back.

5. Discuss the two extreme limits E = m and E � m.

Solution
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Case E = m :
In this case, we are in the CMS of the π0. Thus one gets θ = π. Indeed, inspecting the
equation written in question (2) (the one before using E = E1 + E2) shows that E1 = E2,
thus E1 = E2 = m/2 so that cos θ = −1: the two photons share the energy and are emitted
back-to-back.

Case E � m :
From the relation

cos θ = 1− m2

E2

1

2x(1− x)

one immediately gets that cos θ → 1: the two photon are emitted collinearly, in the direction
of the decaying π0.

2 Noether theorem

2.1 Current associated to Lagrangians independent of the fields

2.1.1 Scalar case

1. Consider the Lagrangian of a real massless scalar field.

L =
1

2
(∂µφ)(∂µφ) . (2)

(i) Write the Noether current associated to the transformation

φ→ φ+ α (3)

where α is a constant, and explain why jµ = ∂µφ is conserved.

Solution

The Lagrangian (2) is obviously invariant under the transformation (3). Thus, the Noether
current

jµ =
δL

δ(∂µφ)
δφ = (∂µφ)α

is conserved, and since this is valid for any constant α, this implies that

jµ = ∂µφ

is conserved.

(ii) Check directly that this current is conserved.
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Solution

One gets

∂µj
µ = �φ = 0

after using the Euler-Lagrange equation which is just the Klein-Gordon equation.

2. Suppose that the Lagrangian contains a mass term, i.e.

Lm =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 . (4)

(i) What appends to the above current?

Solution

With a mass term, the Lagrangian is not anymore invariant under the transformation (3),
and thus the Noether current is not anymore conserved.

(ii) Compute its derivative in terms of φ and m. Comment.

Solution

One has

∂µj
µ = �φ = −m2φ

after using the Euler-Lagrange equation which now reads

�φ+m2φ = 0 .

Obviously, as expected this vanishes in the limit m = 0.

2.1.2 The case of QED

3. In the case of QED for free photons without matter, we know that the Lagrangian reads

LQED = −1

4
Fµν F

µν (5)

with
Fµν = ∂µAν − ∂νAµ . (6)

(i) By considering the global transformation

δxµ = 0 (7)
δAµ(x) = constant = δAµ ,

show that the current
δL

δ(∂µAν)
(8)

is conserved.
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Solution

The Lagrangian is invariant under the transformation (7). Thus, the current

jµ =
δL

δ(∂µAν)
δAν

is conserved, for any constant δAµ. This thus leads to the conservation of the current
δL

δ(∂µAν)
.

(ii) Deduce that F µν is conserved. Comment.

Solution

The antisymmetry of ∂µAν − ∂νAµ allows to rewrite (5) as

LQED = −1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) = −1

2
(∂µAν − ∂νAµ)∂µAν ,

which leads to
δL

δ(∂µAν)
= −F µν .

The conservation of the current (8) then reads

∂µF
µν = 0 ,

which is nothing more than the first set of Maxwell’s equations in the vacuum.

4. The QED Lagrangian of photons coupled to an external current reads

LQED = −1

4
Fµν F

µν − jµAµ . (9)

(i) What appends to the above current?

Solution

With the presence of a term involving the coupling of an external current to the field Aµ,
the Lagrangian is not anymore invariant under the transformation (7), and thus the Noether
current is not anymore conserved.

(ii) Compute its derivative. Comment.

Solution

One has

−∂µF µν = −jν

after using the Euler-Lagrange equation which are just the first set of Maxwell’s equation.
Obviously, as expected this vanishes in the limit jµ = 0.
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2.2 Multiple symmetry generators

1. Preliminary
Consider the set U(N), made of N ×N matrices with complex coefficients satisfying

U † · U = U · U † = Id (10)

where Id is the N ×N identity matrix.
(i) Show that the determinant of these matrices is a phase factor.

Solution

From (10) one gets

| detU |2 = 1

which shows that | detU | = 1 and thus that detU is phase factor.

(ii) Consider a matrix U of U(N), expanded in the vicinity of Id. For convenience, this
expansion is written in the form

U = Id + i T + o(T ) (11)

where ‖T‖ � 1 (the precise definition of this norm plays no role here, one should just
interpret this as T small with respect to Id).
Show that the matrices T are hermitian.

Solution

From (10) one gets

(Id + iT + o(T ))(Id− iT † + o(T )) = Id + i(T − T †) + o(T ) = Id

so that T = T †, hence the result.

(iii) Show that there are N2 independent N ×N hermitian matrices. In the rest of this exer-
cise, they will be labeled by an index a ∈ {1, · · · , N2}. A given chosen set of N2 independent
T matrices is called a set of U(N) generators.

Solution

A hermitian matrix is completely fixed by the value of (N − 1)N/2 complex coefficients (the
non-diagonal terms) and N real coefficients (the diagonal terms). Since any complex number
is a set of two real numbers (its real and imaginary parts), this means (N − 1)N +N = N2

real coefficients.
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(iv) The subset SU(N) of U(N) matrices is made of matrices of determinant unity. Besides,
one can show that for any N ×N (diagonalizable) matrix X,

det(Id + εX) = 1 + εTrX + o(ε) . (12)

Deduce the constraint which should be satisfied by the generators of SU(N), and then the
number of generators of SU(N).

Solution

The constraint detU = 1 obviously leads to TrX = 0. This adds one constraint on the real
coefficients fixing the value of X, so that there are N2−1 independent generators of SU(N).

2. One can prove that in the case of U(N) (this is valid for any compact group), the whole
connected component of Id can be obtained by exponentiating a suitable linear combination
of the generators or U(N). It means that any U(N) matrix which belongs to the connected
component of Id reads

U = eiω
aTa

(13)

where ωa are N2 real numbers, and T a are the generators.
Consider the Lagrangian

L = (∂µΦ)†∂µΦ−m2Φ†Φ (14)

where

Φ =


ϕ1

ϕ2
...
ϕN

 (15)

is a column vector made of N complex scalar fields.
(i) Show that the Lagrangian is symmetric under the variation

Φ → eiω
aTa

Φ (16)
Φ† → Φ†e−iω

aTa

(17)

Solution

This is obvious from the definition of U(N).

(ii) Write the corresponding set of N2 conserved currents.

Solution
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Consider the infinitesimal transformations

δΦ = iωaT aΦ (18)
δΦ† = −Φ†iωaT a (19)

where ‖ω‖ � 1. The Noether theorem reads

jµ =
δL

δ(∂µΦ)
δΦ + δΦ†

δL
δ(∂µΦ†)

= (∂µΦ†)(iωaT aΦ)− (Φ†iωaT a)(∂µΦ)

= −i(Φ†T a∂µΦ− (∂µΦ†)T aΦ)ωa

which implies that the family of N2 currents

jaµ = −i(Φ†T a∂µΦ− (∂µΦ†)T aΦ)

are conserved.

(iii) Discuss the special case N = 1.

Solution

When N = 1 we recover the usual U(1) current

jµ = −i(Φ∗∂µΦ− (∂µΦ∗)Φ)

since there is just one generator, the number 1 which is the only 1× 1 hermitian matrix.

3. Using the fact that each field ϕi can be decomposed into its real and imaginary part, one
can rewrite, adapting the notation accordingly,

Φ =


ϕ1 + iϕ2

ϕ3 + iϕ4
...

ϕ2N−1 + iϕ2N

 (20)

(i) Show that the Lagrangian can be rewritten as

L = (∂µΦ̃)T∂µΦ̃−m2Φ̃T Φ̃ (21)

with

Φ̃ =


ϕ1

ϕ2
...

ϕ2N

 . (22)
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Solution

This is obvious from the fact that ϕ2
2i−1 + ϕ2

2i = |ϕ2i−1 + iϕ2i|2.

(ii) Deduce that the symmetry of the Lagrangian is in fact O(2N).

Solution

This comes from the fact that O(2N) is the set of transformation which leaves the norm of
Φ̃ invariant. This also leaves the norm of ∂µΦ̃ invariant.

(iii) Repeating the above discussion made for U(N), see question 1., characterize the gener-
ators of O(2N) and find their number. Write the corresponding Noether currents.

Solution

A Taylor expansion of the constraint

AT · A = A · AT = Id

gives now

T + T T = 0

i.e. the generators are made of (2N) × (2N) antisymmetric matrices. These are fixed by
the knowledge of (2N)(2N − 1)/2 = N(2N − 1) real coefficients. Denoting as Xa a set of
N(2N−1) independent (2N)×(2N) antisymmetric matrices, the Noether currents now read

jaµ = −iΦ̃TXa∂µΦ̃.
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