
M1 General Physics 2020-2021

Major PNU

Particles

Mid-term exam

Documents allowed

Notes:

- The subject is deliberately long. It is not requested to reach the end to get a good
mark!
- For convenience, one may freely put c = 1 everywhere.
- Space coordinates maybe freely denoted as (x, y, z) or (x1, x2, x3).
- The standard notation according to which a quantity with superscript * is measured in the
center-of-mass frame will be used.

Any process is characterized by the scattering amplitude which gives the amplitude of prob-
ability to pass from a given initial state to another given final state. Knowing the phase
space for the initial and final states, the modulus square of this amplitude, and the flux of
initial particles, one can compute the cross-section of the process, which is an experimen-
tal observable. Our purpose here is obtain several generic properties of the flux and of the
amplitude.

1 Flux

Considering the scattering of a beam on a target, the flux term accounts for the fact that a
target has a given number density, and that the beam has a given number density, made of
particles of type B with a velocity vB.
More generally, for a head-on scattering (let us say along the z axis), the masses, velocities,
energies of particles A and B being denoted as mA, ~pA, EA and mB, ~pB, EB, it can be shown
that this flux factor reads

2K = |~vA − ~vB| 2EA 2EB . (1)

1. Consider a boost along the z axis, the new frame F ′ moving with respect to initial one
F with a velocity ~βc. As usual, the rapidity φ of this boost is defined through the relation
β = tanhφ.

(a) Give the expression of γ and γβ as hyperbolic trigonometric functions of the rapidity φ.
Hint: cosh2 φ− sinh2 φ = 1 .

Solution

One has

β = tanhφ ,

γ =
1

√

1− tanh2 φ
= coshφ ,

γβ = sinh φ .
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(b) Write this boost using φ and then using β and γ.

Solution

A pure boost of rapidity φ along z can be written as

{

x0′ = cosh φ x0 − sinhφ x3

x3′ = − sinhφ x0 + cosh φ x3 ,

or equivalently, β being algebraic,

{

x0′ = γ x0 − γβ x3

x3′ = −γβ x0 + γ x3

2. Prove that under such a boost, the velocity of a particle transforms as

v1′ =
1

γ

v1

1− β v3

c

and v2′ =
1

γ

v2

1− β v3

c

, (2)

v3′ =
v3 − β c

1 − β v3

c

. (3)

Hint: consider the differential of a boost.
Discuss the non-relativistic limit v ≪ c, β ≪ 1 and comment.

Solution

We have, through differentiation,

{

dx0′ = γ dx0 − γβ dx1

dx3′ = −γβ dx0 + γ dx3

which gives, since dx0 = cdt and dx0′ = cdt′,

v3′ = c
dx3′

dx0′
= c

−γβdx0 + γdx3

γdx0 − γβdx3
=

v3 − β c

1− β v3

c

.

Besides,

v1′ = c
dx1′

dx0′
= c

dx1

γdx0 − γβdx1
=

1

γ

v2

1− β v3

c

,

and similarly for v2′.
At lowest order, we get v1′ ∼ v1, v2′ ∼ v2 and v3′ ∼ v3 − βc as expected in the change of
inertial frame in non-relativistic mechanics.
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3. Show that the flux factor 2K given by Eq. (1) is invariant under boosts along the z axis.

Solution

Under a boost along the z axis, one has, according to Eq. (2),

v′B − v′A = (vB − vA)
1− β2

(1− βvA)(1− βvB)
.

Besides,

E ′

A = γ EA − γβp3A ,

E ′

B = γ EB − γβp3B ,

so that, since v = p/E,

E ′

A E ′

B = EA EB γ2

(

1− β
p3A
EA

)(

1− β
p3B
EB

)

= EA EB γ2(1− βvA)(1− βvB) ,

and finally
E ′

A E ′

B (v′B − v′A) = EAEB (vB − vA)

where we have used the fact that γ2(1 − β2) = 1, which implies that 2K is invariant under
boost along the z axis.

4. Prove that the flux factor can be expressed as

2K = 4(EB|~pA|+ EA|~pB|) . (4)

Solution

Using ~v = ~p/E one gets from Eq. (1)

2K = 4EA EB

∣

∣

∣

∣

~pA
EA

− ~pB
EB

∣

∣

∣

∣

= 4 |EB~pA −EA~pB| = 4(EB|~pA|+ EA|~pB|)

since ~pA and ~pB point in opposite directions.

5. Demonstrate that

2K = 4
√

(pA · pB)2 −m2
Am

2
B . (5)

Solution
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For convenience, without loss of generality, let us assume that A moves in the z direction,
and B in the −z direction. Then, since pA = (EA, 0, 0, |~pA|) and pB = (EB, 0, 0,−|~pB|) we
have on the one hand

(pA · pB)2 = (EAEB + |~pA||~pB|)2 = E2

AE
2

B + 2|~pA||~pB|EAEB + ~p 2

A ~p 2

B

and on the other hand

m2

Am
2

B = (E2

A − ~p 2

A)(E
2

B − ~p 2

B) = E2

AE
2

B −E2

A~p
2

B − E2

B~p
2

A + ~p 2

A~p
2

B

and thus

(pA · pB)2 −m2

Am
2

B = E2

B~p
2

A + E2

A~p
2

B + 2|~pA||~pB|EAEB = (EB|~pA|+ EA|~pB|)2

which ends the proof.

6. In the center-of-mass frame, show that

2K = 4 p∗i W
∗ , (6)

where W ∗ = E∗

A + E∗

B is the total center of mass energy.

Solution

Starting from
{

E∗2
A − p∗2i = m2

A

E∗2
B − p∗2i = m2

B

with p∗i ≡ |~p ∗

A| = |~p ∗

B| , since ~p ∗

A + ~p ∗

B = ~0, one deduces, using the expressions

pA = (E∗

A, 0, 0, p
∗

i ) and pB = (E∗

B, 0, 0,−p∗i ) ,

that the flux factor (5) can be expressed as

2K = 4
[

(E∗

A E∗

B + p∗2i )2 − (E∗2

A − p∗2i )(E∗2

B − p∗2i )
]1/2

= 4
[

(E∗

A + E∗

B)
2p∗2i )

]1/2

= 4 (E∗

A + E∗

B) p
∗

i = 4W ∗p∗i .

2 Mandelstam variables

Any 2 body → 2 body scattering between particles P1, P2, producing particles P3 and P4,

P1(p1)P2(p2) → P3(p3)P3(p4) (7)

is completely characterized, if one does not take into account spin effects, by the Mandelstam
variables defined by

s ≡ (p1 + p2)
2 = (p3 + p4)

2 ,

t ≡ (p1 − p3)
2 = (p2 − p4)

2 ,

u ≡ (p1 − p4)
2 = (p2 − p3)

2 ,

(8)
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Figure 1: Mandelstam variables for a 2 body → 2 body process.

the various equivalent expressions coming from energy-momentum conservation. These vari-
ables are illustrated on Fig. 1. Each of these variables can be considered as a “s”-variable for
a crossed-channel process:

“s”-variable “t”-variable “u”-variable
s-channel: 1 + 2 → 3 + 4 s t u

t-channel: 1 + 3̄ → 2̄ + 4 t s u

u−channel: 1 + 4̄ → 3 + 2̄ u t s

(9)

Indeed, a particle i of momentum pi with p0 > 0 should be considered as its antiparticle ī,
of momentum −pi when p0 < 0. The same amplitude M(s, t, u) thus describes these 3 reac-
tions, as well as every desintegration process 1 body → 3 body (for example 1 → 2̄+3+4) and
every back reaction (for example 3+4 → 1+2), by analytic continuation on variables s, t, u.

1. For further use, we denote, using the fact that 2p1 · p2 = s−m2
1 −m2

2 ,

λ(s,m2

1, m
2

2) = 4[(p1 · p2)2 −m2

1m
2

2] . (10)

We thus have

K(s) =
√

λ(s,m2
1, m

2
2) . (11)

(a) Show that

λ(s, m2

1, m
2

2) = [s− (m1 +m2)
2][s− (m1 −m2)

2] . (12)

Solution

We have

λ(s, m2

1, m
2

2) = 4[(p1 · p2)2 −m2

1 m
2

2] = [2(p1 · p2)− 2m1m2][2(p1 · p2) + 2m1m2]

= [s−m2

1 −m2

2 − 2m1m2][s−m2

1 −m2

2 + 2m1m2]

= [s− (m1 +m2)
2][s− (m1 −m2)

2] .

(b) Give the expression of λ(s, 0,M) when one mass vanishes, and of λ(s, 0, 0) when both
vanish.

5



Solution

λ(s, 0, M) = (s−M2)2 : one of the masses vanishes

λ(s, 0, 0) = s2 : the two masses vanish.

(c) Show that in the center-of-mass frame, p∗i = |~p1| = |~p2| and p∗f = |~p3| = |~p4| have very
simple relativistic invariant forms:

p∗i =

√

λ(s, m2
1, m

2
2)

2
√
s

, (13)

and

p∗f =

√

λ(s, m2
3, m

2
4)

2
√
s

. (14)

Solution

This expression of p∗i is obvious from the fact that W ∗ =
√
s and from the relations (6) and

(11). The expression of p∗f is obtained in a similar way by considering the particles 3 and 4:
the proof which led to I.6 can be reproduced identically for the particles 3 and 4, leading to

2
√

λ(s, m2
3, m

2
4) = 4W ∗p∗f = 4

√
s p∗f ,

therefore ending the proof.

2. Prove that
s + t+ u =

∑

i

m2

i . (15)

Hint: compute 2(s+ t + u) is a “democratic way“, using Eq. (8).

Solution

This is proven by computing 2(s + t + u), summing the 6 terms of (8) and then using the
energy-momentum conservation:

2 (s+ t+ u) = 3
∑

i

m2

i + 2 p1 · p2 + 2 p3 · p4 − 2 p1 · p3 − 2 p2 · p4 − 2 p1 · p4 − 2 p2 · p3

= 3
∑

i

m2

i + 2 p1 · p2 + 2 p3 · p4 − 2 (p1 + p2) · (p3 + p4)

= 3
∑

i

m2

i + (s−m2

1 −m2

2) + (s−m2

3 −m2

4)− 2s = 2
∑

i

m2

i .
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Consequently, the scattering amplitude only depends on two independent variables. One
conventionally writes

M = M(s, t) .

3. (a) In the center-of-mass frame, show that

E∗

1 =
s+m2

1 −m2
2

2
√
s

, E∗

3 =
s+m2

3 −m2
4

2
√
s

,

E∗

2 =
s+m2

2 −m2
1

2
√
s

, E∗

4 =
s+m2

4 −m2
3

2
√
s

.

(16)

Hint: use Eqs. (13) and (14).

Solution

For example, in order to express E∗

1 , it is enough to combine (13) and E∗2
1 = ~p ∗2

1 +m2
1. This

gives

E∗

1 =
√

p ∗2
i +m2

1 =

√

λ(s,m2
1, m

2
2) + 4m2

1s

4s

=

√

[s− (m1 +m2)2][s− (m1 −m2)2] + 4m2
1s

2
√
s

=

√

s2 + (m2
1 −m2

2)
2 − 2s(m2

1 +m2
2) + 4m2

1s

2
√
s

=

√

s2 + (m2
1 −m2

2)
2 + 2s(m2

1 −m2
2)

2
√
s

=
s+m2

1 −m2
2

2
√
s

.

The proofs are similar for the other E∗

i : for E∗

2 , starting from E∗

1 one should just permute
the roles of particles 1 and 2, for E∗

3 , use p∗f instead of p∗i and then for E∗

4 permute the roles
of particles 3 and 4.

(b) Prove that the following threshold conditions should be satisfied, in each indicated chan-
nel:

s-channel: 1 + 2 → 3 + 4 : s > (m1 +m2)
2 and (m3 +m4)

2

t-channel: 1 + 3̄ → 2̄ + 4 : t > (m1 +m3)
2 and (m2 +m4)

2

u-channel: 1 + 4̄ → 3 + 2̄ : u > (m1 +m4)
2 and (m2 +m3)

2

(17)

Solution
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In the center-of-mass frame, we have, on the one hand

√
s = W ∗ =

∑

k=1,2

E∗

k =
∑

k=1,2

√

p ∗2
k +m2

k > m1 +m2 ,

since for each k, p∗k > 0 , and on the other hand

√
s = W ∗ =

∑

k=3,4

E∗

k =
∑

k=3,4

√

p ∗2
k +m2

k > m3 +m4 ,

since for each k, p∗k > 0 . This leads to the constraint s > (m1 +m2)
2 and s > (m3 +m4)

2.
Note that this can be equivalently obtained from the relations (13) and (14): for p∗i and p∗f
to be defined, i.e. p ∗2

i and p ∗2
f to be positive, a necessary and sufficient condition is that

λ(t,m2
1, m

2
2) > 0 and λ(t,m2

3, m
2
4) > 0 respectively, i.e. s > (m1 +m2)

2 and s > (m3 +m4)
2

respectively.
There is still a less direct but equivalent way to get the same result: require that E∗

1 > m1

and E∗

2 > m2. Using the relations (16) leads after a careful analysis to the same constraint
s > (m1 + m2)

2, and a similar analysis for E∗

3 > m3 and E∗

4 > m4 leads to the constraint
s > (m3 +m4)

2.
Analogous discussions and results hold for crossed-channels:
- in the t−channel one should consider λ(t,m2

1, m
2
3) and λ(t,m2

2, m
2
4). This leads to the

conditions t > (m1 +m3)
2 and t > (m2 +m4)

2.
- in the u−channel one should consider λ(u,m2

1, m
2
4) and λ(u,m2

2, m
2
3). This leads to the

conditions u > (m1 +m4)
2 and u > (m2 +m3)

2.

4. The diffusion angle is by definition the scattering angle between particles 1 and 3, i.e. the
scattering angle in the s−channel.

(a) Prove that

cos θ =
t−m2

1 −m2
3 + 2E1E3

2 |~p1||~p3|
. (18)

Solution

For that purpose, let us rewrite the diffusion angle θ for the s−channel process:

t = (p1 − p3)
2 = m2

1 +m2

3 − 2 p1 · p3 = m2

1 +m2

3 − 2E1E3 + 2 |~p1||~p3| cos θ . (19)

that is

cos θ =
t−m2

1 −m2
3 + 2E1E3

2 |~p1||~p3|
.

(b) In an arbitrary reference frame, for fixed s and E1, explain why the discussion on the
maximal/minimal values of cos θ as a function of t is in general complicate.

Solution
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In an arbitrary frame, the variables E3 and |~p3| are cos θ-dependent, therefore the expression
of cos θ as a function of t is very complicate, making the discussion somehow tricky.

(c) In the center-of-mass frame, one may write

cos θ∗ =
t−m2

1 −m2
3 + 2E∗

1E
∗

3

2 p∗1 p
∗

3

. (20)

(i) At fixed values of s and E1, to which limit in t corresponds the forward reaction θ∗ = 0?

Solution

The forward reaction θ∗ = 0 corresponds to the maximal algebraic value for t.

(ii) At fixed values of s and E1, to which limit in u corresponds the backward reaction θ∗ = π?

Solution

We have

cos θ∗ =
m2

2 +m2
4 − s− u+ 2E∗

1E
∗

3

2 p∗1 p
∗

3

,

and thus the backward reaction θ∗ = π corresponds to the maximal algebraic value for u.

(d) Show that

cos θ∗ =
s2 + s(2t−m2

1 −m2
2 −m2

3 −m2
4) + (m2

1 −m2
2)(m

2
3 −m2

4)
√

λ(s,m2
1, m

2
2) λ(s,m

2
3, m

2
4)

. (21)

Solution

In this center-of-mass frame, the angle θ∗ can be expressed as:

cos θ∗ =
t−m2

1 −m2
3 + 2E∗

1E
∗

3

2 p∗1 p
∗

2

=

[

t−m2

1 −m2

3 +
(s+m2

1 −m2
2)(s+m2

3 −m2
4)

2s

]

2s
√

λ(s,m2
1, m

2
2) λ(s,m

2
3, m

2
4)

=
s2 + s(2t−m2

1 −m2
2 −m2

3 −m2
4) + (m2

1 −m2
2)(m

2
3 −m2

4)
√

λ(s,m2
1, m

2
2) λ(s,m

2
3, m

2
4)

.
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(e) In the large energy limit where s ∼ −u ≫ −t, m2
i , called Regge limit, show that θ∗ → 0.

Solution

In this limit, since λ(s,m2
i ) ∼ s2 we get cos θ∗ ∼ 1 i.e. θ∗ → 0.

5. Physical region for t.
(a) For a given s, show that the physical region for t looks like t− 6 t 6 t+ and give the
values of t− and t+.

Solution

The constraint −1 6 cos θ∗ 6 1 provides the range in t:

t− 6 t 6 t+ with

t± = m2

1 +m2

3 −
1

2s
{(s+m2

1 −m2

2)(s+m2

3 −m2

4)∓
√

λ(s,m2
1, m

2
2) λ(s,m

2
3, m

2
4)} .

(b) In the case of equal masses (m2
i = m2), give the physical region in t.

Solution

One gets λ(s, m2, m2) = s(s− 4m2) and thus

cos θ∗ = 1 +
2t

s− 4m2
.

The physical region for the reaction is then given by the conditions

s ≥ 4m2 and t− = 4m2 − s 6 t 6 t+ = 0 .

(c) Still in the case of equal masses (m2
i = m2), express t and u as functions of s, m2 and

cos θ∗. Comment.

Solution

One can check that

t = −s− 4m2

2
(1− cos θ∗) ,

u = −s− 4m2

2
(1 + cos θ∗)

where we have used the fact that s + t + u = 4m2 to pass from the first to the second
expression .
One then recovers the fact that
• t negative, small in absolute value, corresponding to θ∗ small (forward)
• u negative, small in absolute value, corresponding to π − θ∗ small (forward).
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