Particles

Final exam: session 2

March 24th 2022
Documents allowed

Notes:

- Space coordinates may be freely denoted as (x, y, z) or $\left(x^{1}, x^{2}, x^{3}\right)$.
- One may always assume that fields are rapidly decreasing at infinity.

1 Muon decay

A muon is a heavy lepton, of mass $m_{\mu}=105 \mathrm{MeV}$. Its mean life-time is $\tau=\frac{1}{\lambda}=2.210^{-6} \mathrm{~S}$. Muons are created in the upper atmosphere when cosmic rays collide with air molecules.

1. Consider a muon of energy 17 GeV . What fraction of the light velocity does it carry, as seen by an observer on Earth?

Solution

\qquad
From $E_{\mu}=\gamma_{\mu} m_{\mu}$ one gets $\gamma_{\mu} \simeq 162$. From the expression

$$
\gamma_{\mu}=\frac{1}{\sqrt{1-\frac{v_{\mu}^{2}}{c^{2}}}}
$$

one gets

$$
v_{\mu}=c \frac{\sqrt{\gamma_{\mu}^{2}-1}}{\gamma_{\mu}} \simeq 0.99998 c
$$

2. What is the mean life-time of such a muon, again as seen by an observer on Earth?
\qquad
From the time dilation formula, one has $\tau_{\text {Earth }}=\gamma_{\mu} \tau_{\mu} \simeq 3.56 \times 10^{-4}$.
3. Out of a million particles produced at altitude 50 km with the above energy, how many will reach the Earth before decaying?

The muons travel a distance $d=50 \mathrm{~km}$, at a velocity $0.99998 c$. This takes a time $t_{\text {Earth }}=$ $d / v_{\mu}=5 \times 10^{4} /\left(0.99998 \times 3 \times 10^{8}\right) \simeq 1.67 \times 10^{-4} \mathrm{~s}$. Using the formula describing the decay of muons in the Earth frame

$$
N(t)=N(0) e^{-t_{\text {Earth }} / \tau_{\text {Earth }}}
$$

one thus gets, at ground level,

$$
N_{\text {ground }}=10^{6} \times e^{-1.67 \times 10^{-4} / 3.56 \times 10^{-4}} \simeq 6.3 \times 10^{5}
$$

4. Compare this result with the one obtained in a non-relativistic treatment. Comment. Solution

In a non-relativistic treatment, there is no time dilation, therefore

$$
N_{\text {non-relativistic }}(t)=N(0) e^{-t_{\text {Earth }} / \tau_{\mu}}
$$

and one thus gets, at ground level,

$$
N_{\text {ground, non-relativistic }}=10^{6} \times e^{-1.67 \times 10^{-4} / 2.2 \times 10^{-6}} \simeq 1.2 \times 10^{-27}
$$

i.e 0!!

2 Nonrelativistic Lagrangian

The complex scalar field $\psi(\vec{r}, t)$ in the nonrelativistic approximation has a Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{i \hbar}{2}\left(\psi^{*} \frac{\partial \psi}{\partial t}-\psi \frac{\partial \psi^{*}}{\partial t}\right)-\frac{\hbar^{2}}{2 m}|\vec{\nabla} \psi|^{2}-U|\psi|^{2} \tag{1}
\end{equation*}
$$

where $m>0$ is the particle mass, \hbar the reduced Planck constant and $U(\vec{r}, t)$ is the potential field in which the particle propagates.

1. Derive the two equations of motion for $\psi(\vec{r}, t)$ and $\psi^{*}(\vec{r}, t)$ from the Lagrangian (1) and interpret them.

Treating ψ and ψ^{*} as two independent fields, the two Euler Lagrange equations read

$$
\frac{\delta \mathcal{L}}{\delta \psi}=\frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \partial_{t} \psi}+\partial_{i} \frac{\delta \mathcal{L}}{\delta \partial_{i} \psi}
$$

and

$$
\frac{\delta \mathcal{L}}{\delta \psi^{*}}=\frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \partial_{t} \psi^{*}}+\partial_{i} \frac{\delta \mathcal{L}}{\delta \partial_{i} \psi^{*}} .
$$

First,

$$
\frac{\delta \mathcal{L}}{\delta \psi}=-\frac{i \hbar}{2} \partial_{t} \psi^{*}-U \psi^{*} \quad \text { and } \quad \frac{\delta \mathcal{L}}{\delta \psi^{*}}=\frac{i \hbar}{2} \partial_{t} \psi^{*}-U \psi
$$

Second,

$$
\frac{\delta \mathcal{L}}{\delta \partial_{t} \psi}=\frac{i \hbar}{2} \psi^{*} \quad \text { i.e. } \quad \frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \partial_{t} \psi}=\frac{i \hbar}{2} \partial_{t} \psi^{*}
$$

and

$$
\frac{\delta \mathcal{L}}{\delta \partial_{t} \psi^{*}}=-\frac{i \hbar}{2} \psi \quad \text { i.e. } \quad \frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \partial_{t} \psi^{*}}=-\frac{i \hbar}{2} \partial_{t} \psi .
$$

Third,

$$
\frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi}=-\frac{\hbar^{2}}{2 m} \vec{\nabla} \psi^{*} \quad \text { i.e. } \quad \partial_{i} \frac{\delta \mathcal{L}}{\delta \partial_{i} \psi}=\vec{\nabla} \frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi}=-\frac{\hbar^{2}}{2 m} \Delta \psi^{*}
$$

and

$$
\frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi^{*}}=-\frac{\hbar^{2}}{2 m} \vec{\nabla} \psi \quad \text { i.e. } \quad \partial_{i} \frac{\delta \mathcal{L}}{\delta \partial_{i} \psi^{*}}=\vec{\nabla} \frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi^{*}}=-\frac{\hbar^{2}}{2 m} \Delta \psi,
$$

so that finally one gets the two complex conjugated equations

$$
-i \hbar \partial_{t} \psi^{*}=-\frac{\hbar^{2}}{2 m} \Delta \psi^{*}+U \psi^{*}
$$

and

$$
i \hbar \partial_{t} \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+U \psi
$$

which is the Schrödinger equation and its complex conjugated form.
2. Hamiltonian
a. Construct the Hamiltonian function density \mathcal{H} using the Lagrangian.

Solution \qquad
One should perform a Legendre transformation of the Lagrangian density, i.e.

$$
\mathcal{H}=\frac{\delta \mathcal{L}}{\partial_{t} \psi} \partial_{t} \psi+\frac{\delta \mathcal{L}}{\partial_{t} \psi^{*}} \partial_{t} \psi^{*}-\mathcal{L}=\frac{\hbar^{2}}{2 m}|\vec{\nabla} \psi|^{2}+U|\psi|^{2}
$$

b. Calculate the total field energy and comment.

The total field energy is

$$
\begin{equation*}
H=\int \mathcal{H} d^{3} x=\int \psi\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+U\right) \psi d^{3} x \tag{2}
\end{equation*}
$$

where we have used a partial integration on the assumption that $\psi \rightarrow 0$ as $r \rightarrow \infty$. It coincides with the quantum mechanical average value of the particle's energy.
c. Propose the quantum interpretation of the result thus obtained, in the case of a time independent potential.
\qquad
If the potential energy $U(\vec{r})$ is time independent and the particle is in a state with a definite energy, that is, $\hat{H} \psi=E \psi$ with the usual quantum mechanical Hamiltonian operator

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+U
$$

obviously one gets $H=E$. Thus, the energy calculated by the formulas of field theory as the integral over the entire three-dimensional space of the energy density coincides with the energy of a quantum particle.
3. The Schrödinger equation for the wave function $\psi(\vec{r}, t)$ of a spin-free nonrelativistic particle of charge q has the form

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left[\vec{\nabla}-\frac{i q}{\hbar c} \vec{A}(\vec{r}, t)\right]^{2} \psi+q \varphi(\vec{r}, t) \psi \tag{3}
\end{equation*}
$$

where $\vec{A}(\vec{r}, t)$ and $\varphi(\vec{r}, t)$ are the electromagnetic potentials (specified real functions).
a. Guess the Lagrangian leading to (3).

Hint: rely on the covariant derivative $\vec{D}=\vec{\nabla}-\frac{i q}{\hbar c} \vec{A}$ and on the guess of the potential U.

Obviously, one should consider the Lagrangian obtained from (1) by performing the minimal replacement $\vec{\nabla} \rightarrow \vec{D}$, and $U=q \varphi$, i.e.

$$
\begin{aligned}
\mathcal{L} & =\frac{i \hbar}{2}\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right)-\frac{\hbar^{2}}{2 m}\left|\vec{\nabla} \psi-\frac{i q}{\hbar c} \vec{A} \psi\right|^{2}-q \varphi|\psi|^{2} \\
& =\frac{i \hbar}{2}\left(\psi^{*} \partial_{t} \psi-\psi \partial_{t} \psi^{*}\right)-\frac{\hbar^{2}}{2 m}\left(\vec{\nabla} \psi^{*}+\frac{i q}{\hbar c} \vec{A} \psi^{*}\right) \cdot\left(\vec{\nabla} \psi-\frac{i q}{\hbar c} \vec{A} \psi\right)-q \varphi \psi^{*} \psi .
\end{aligned}
$$

b. Show in detail that the equation of motion of this Lagrangian is indeed the Schrödinger equation (3).
\qquad
First,

$$
\frac{\delta \mathcal{L}}{\delta \psi}=-\frac{i \hbar}{2} \partial_{t} \psi^{*}+\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c}\left(\vec{\nabla} \psi^{*}+\frac{i q}{\hbar c} \vec{A} \psi^{*}\right) \cdot \vec{A}-q \varphi \psi^{*}
$$

and

$$
\frac{\delta \mathcal{L}}{\delta \psi^{*}}=\frac{i \hbar}{2} \partial_{t} \psi^{*}-\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c}\left(\vec{\nabla} \psi-\frac{i q}{\hbar c} \vec{A} \psi\right) \cdot \vec{A}-q \varphi \psi
$$

Second,

$$
\frac{\delta \mathcal{L}}{\delta \partial_{t} \psi}=\frac{i \hbar}{2} \psi^{*} \quad \text { i.e. } \quad \frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \partial_{t} \psi}=\frac{i \hbar}{2} \partial_{t} \psi^{*}
$$

and

$$
\frac{\delta \mathcal{L}}{\delta \partial_{t} \psi^{*}}=-\frac{i \hbar}{2} \psi \quad \text { i.e. } \quad \frac{d}{d t} \frac{\delta \mathcal{L}}{\delta \partial_{t} \psi^{*}}=-\frac{i \hbar}{2} \partial_{t} \psi .
$$

Third,

$$
\frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi}=-\frac{\hbar^{2}}{2 m}\left(\vec{\nabla} \psi^{*}+\frac{i q}{\hbar c} \vec{A} \psi^{*}\right) \quad \text { i.e. } \quad \partial_{i} \frac{\delta \mathcal{L}}{\delta \partial_{i} \psi}=\vec{\nabla} \frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi}=-\frac{\hbar^{2}}{2 m} \Delta \psi^{*}-\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c} \vec{\nabla} \cdot\left(\vec{A} \psi^{*}\right)
$$

and

$$
\frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi^{*}}=-\frac{\hbar^{2}}{2 m}\left(\vec{\nabla} \psi-\frac{i q}{\hbar c} \vec{A} \psi\right) \quad \text { i.e. } \quad \partial_{i} \frac{\delta \mathcal{L}}{\delta \partial_{i} \psi^{*}}=\vec{\nabla} \frac{\delta \mathcal{L}}{\delta \vec{\nabla} \psi^{*}}=-\frac{\hbar^{2}}{2 m} \Delta \psi+\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c} \vec{\nabla} \cdot(\vec{A} \psi),
$$

Combining these results, the Euler-Lagrange equations read

$$
-\frac{i \hbar}{2} \partial_{t} \psi^{*}+\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c}\left(\vec{\nabla} \psi^{*}+\frac{i q}{\hbar c} \vec{A} \psi^{*}\right) \cdot \vec{A}-q \varphi \psi^{*}=\frac{i \hbar}{2} \partial_{t} \psi^{*}-\frac{\hbar^{2}}{2 m} \Delta \psi^{*}-\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c} \vec{\nabla} \cdot\left(\vec{A} \psi^{*}\right)
$$

and

$$
\frac{i \hbar}{2} \partial_{t} \psi-\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c}\left(\vec{\nabla} \psi-\frac{i q}{\hbar c} \vec{A} \psi\right) \cdot \vec{A}-q \varphi \psi=-\frac{i \hbar}{2} \partial_{t} \psi-\frac{\hbar^{2}}{2 m} \Delta \psi+\frac{\hbar^{2}}{2 m} \frac{i q}{\hbar c} \vec{\nabla} \cdot(\vec{A} \psi)
$$

Besides, since

$$
\begin{aligned}
& {\left[\vec{\nabla}-\frac{i e}{\hbar c} \vec{A}(\vec{r}, t)\right]^{2} \psi=\left[\vec{\nabla}-\frac{i q}{\hbar c} \vec{A}(\vec{r}, t)\right]\left[\vec{\nabla}-\frac{i q}{\hbar c} \vec{A}(\vec{r}, t)\right] \psi } \\
= & \Delta \psi-\frac{q^{2}}{\hbar^{2} c^{2}} \vec{A}^{2} \psi-\frac{i q}{\hbar c} \vec{\nabla}(\vec{A} \psi)-\frac{i q}{\hbar c} \vec{A} \cdot \vec{\nabla} \psi
\end{aligned}
$$

the Schrödinger equation can be rewritten as

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left[\Delta \psi-\frac{q^{2}}{\hbar^{2} c^{2}} \vec{A}^{2} \psi-\frac{i q}{\hbar c} \vec{\nabla}(\vec{A} \psi)-\frac{i q}{\hbar c} \vec{A} \cdot \vec{\nabla} \psi\right]+q \varphi \psi
$$

while its complex conjugated form reads

$$
-i \hbar \frac{\partial \psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m}\left[\Delta \psi^{*}-\frac{q^{2}}{\hbar^{2} c^{2}} \vec{A}^{2} \psi^{*}+\frac{i q}{\hbar c} \vec{\nabla}\left(\vec{A} \psi^{*}\right)+\frac{i q}{\hbar c} \vec{A} \cdot \vec{\nabla} \psi^{*}\right]+q \varphi \psi^{*}
$$

These two equations are exactly the Euler-Lagrange equations obtained above.

