
M1 General Physics 2021-2022
Major PNU

Particles
Final exam

January 7th 2022

Documents allowed

Notes:
- The subject is deliberately long. It is not requested to reach the end to get a good
mark!
- The system of unit is such that c = 1, ~ = 1, ε0 = 1, µ0 = 1.
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- One may always assume that fields are rapidly decreasing at infinity.

1 Energy-momentum tensor for the electromagnetic field
1. Canonical energy-momentum tensor.

a. We consider a Lagrangian L(x) = L(Aµ(x), ∂νAµ(x)) constructed from a spin-one field Aµ
and its first derivatives, which does not depend explicitly on the space-time position. Based
on the Noether’s theorem, justify that one can construct a conserved energy-momentum
tensor T µν , which reads

T µν =
δL

δ(∂µAλ)
∂νAλ − gµνL . (1)

Solution

Using the transformation

δxµ(x) = constant = δxµ,
δφ = 0 ,

which obviously leaves the Lagrangian invariant, the Noether’s theorem leads to the conser-
vation of the current

jµ =

(
δL

δ(∂µAλ)
∂νAλ − gµνL

)
δxν (2)

for arbitrary δxν , thus the conservation of T µν after factorizing out the arbitrary constant
δxν . Note the fact that T µν thus depends on 2 indices. This is exactly the result of the
tutorial obtained for a scalar field, except for the sum over the various degrees of freedom
Aλ.
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b. In the case of the Lagrangian of a free photon, prove that

T µν = −F µλ∂νAλ +
1

4
gµνF ρσFρσ . (3)

Solution

We know that the Lagrangian of a pure photon field is

Lem = −1

4
FµνF

µν = −1

2
(∂µAν∂µAν − ∂µAν∂νAµ)

so that

δLem

δ(∂µAλ)
= −F µλ.

Thus,

T µν = −F µλ∂νAλ +
1

4
gµνF ρσFρσ .

2. Discuss the symmetry properties of this tensor. Comment.

Solution

The second term in the rhs of Eq. (3) is symmetric. Besides, the first term reads

−F µλ∂νAλ = −(∂µAλ − ∂λAµ)∂νAλ = −(∂µAλ)(∂νAλ) + (∂λAµ)(∂νAλ) .

While the first term is obviously symmetric, the second one is not. This is not surprising, as
according to the last section of the tutorial “classical fields”, a field which carries a spin does
not lead to a symmetrical canonical energy-momentum tensor.

3. Consider the modified energy-momentum tensor

T̂ µν = T µν + ∂λK
λµν (4)

where Kλµν is antisymmetric in its first two indices. This tensor Kλµν is assumed to be built
from the field Aµ and its derivatives. Its explicit form plays no role at this stage.

a. Explain why this tensor is an equally good energy-momentum tensor:

(i) Show that T̂ µν is conserved

Solution
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One has

∂µT̂
µν = ∂µT

µν + ∂µ∂λK
λµν = 0

where we have used the conservation of the canonical tensor T µν and the fact that Kλµν is
antisymmetric in its first two indices while ∂µ∂λ is symmetric.

(ii) Carefully show that T̂ µν has the same globally conserved energy and momentum than
T µν .

Solution

Using T µν and T̂ µν , the conserved charges read respectively

P ν =

∫
T 0νd3x

and

P̂ ν =

∫
T̂ 0νd3x = P ν +

∫
∂λK

λ0νd3x = P ν +

∫
∂iK

i0νd3x .

For the last equality, we have used the fact that Kλµν is antisymmetric in its first two
indices, so that K00ν = 0. In the last expression, the second term vanishes since it is a total
derivative: using the Green-Ostrogradsky theorem, it is equal to the flux of Ki0ν at infinity,
which vanishes for sufficiently fast decreasing fields. Thus, P ν = P̂ ν .

b. We now consider the specific case where

Kλµν = F µλAν . (5)

(i) Show that T̂ µν is now symmetric.

Solution

We now have

T̂ µν = T µν + ∂λK
λµν = T µν + ∂λ(F

µλAν) = T µν + F µλ∂λA
ν

where we have used the equation of motion ∂µF µν = 0 (and the fact that F µν is antisym-
metric) in the last equality. Thus, using question 1.b, we have

T̂ µν = −F µλ∂νAλ +
1

4
gµνF ρσFρσ + F µλ∂λA

ν

= F µλF ν
λ +

1

4
gµνF ρσFρσ

From this last expression, it is clear that T̂ µν is symmetric.
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(ii) Show that one then obtains, for the electromagnetic energy and momentum densities,
respectively:

E =
1

2
(E2 +B2) , (6)

~S = ~E × ~B . (7)

Compare with the well-known results derived in electromagnetism.

Solution

The energy density is given by

E = T̂ 00 = F 0λF 0
λ +

1

4
F ρσFρσ = F 0iF 0

i +
1

4

(
2F 0iF0i + F ijFij

)
=

1

2
F 0iF 0i +

1

4
F ijF ij

Now, on the one hand, since F i0 = Ei, we get F 0iF 0i = ~E2 and on the other hand, since
F ij = −εijkBk, we have

F ijF ij = εijkB
kεij`B

` = 2δk`B
kB` = ~B2

so that

E =
1

2
(E2 +B2) ,

which is the usual energy density. The momentum density is given by

S i = T̂ 0i = F 0λF i
λ = F 0kF i

k = −Ekεki`B
` = ( ~E × ~B)i ,

which is the usual Poynting vector.

2 Scale invariance
Consider the scalar Lagrangian

L =
1

2
∂µφ ∂

µφ− λ

4!
φ4. (8)

1. Write the Euler-Lagrange equation associated to this Lagrangian. Comment.

Solution
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The Euler-Lagrange equation reads

δL(x)

δφ(x)
− ∂µ

δL(x)

δ(∂µφ(x))
= 0 .

Since

δL(x)

δφ(x)
= − λ

3!
φ3

and

δL(x)

δ(∂µφ(x))
= ∂µφ

the Euler-Lagrange equation reads

�φ+
λ

3!
φ3 = 0 .

It reduces as expected to the massless Klein-Gordon equation when λ = 0.

2. In analogy with classical mechanics, one defines the momentum Π of the field φ as

Π =
δL

δ(∂0φ)
. (9)

Explain this analogy, and compute Π for the Lagrangian (8).

Solution

In classical mechanics, the momentum is defined as

p =
∂L

∂q̇
,

so that replacing the single degree of freedom q by the infinite degrees of freedom encoded
in φ(x), and the derivative by a functional derivative, the generalization is obvious.
For the Lagrangian (8), one gets

Π = ∂0φ .

3. In this question, we focus on a massive extension of the Lagrangian (8).

a. Mass dimension
(i) What is the mass dimension of L?

Solution
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Since the action is dimensionless, and since d4x has mass dimension −4, the Lagrangian
should be of dimension 4.

(ii) What is the mass dimension of the field φ?

Solution

Since the kinetic term of Lagrangian has dimension [∂/∂x]2[φ]2 = M4, with [∂/∂x] = M , the
field φ has mass dimension 1.

(iii) What is the dimension of the coupling constant λ?

Solution

Since L has mass dimension 4, and since φ has mass dimension 1 so that φ4 has mass
dimension 4, λ is dimensionless.

b. What would be the structure of a mass term (quadratic in φ), to be added to the La-
grangian (8), up to a multiplicative constant? What would be the equation of motion of this
modified Lagrangian? Comment in the case λ = 0 and fix the value of the constant. Justify
finally that this Lagrangian should read

Lm =
1

2
∂µφ ∂

µφ− 1

2
m2φ2 − λ

4!
φ4, (10)

and write its equation of motion.

Solution

The mass term should be quadratic in φ and of mass dimension 4, therefore it should look
like cm2φ2 since φ is of mass dimension 1. Thus,

Lm =
1

2
∂µφ ∂

µφ+ cm2φ2 − λ

4!
φ4.

The equation of motion is then

�φ− 2cm2φ+
λ

3!
φ3 = 0 .

In the case λ = 0, in order to get the Klein-Gordon equation as the Euler-Lagrange equation
of motion for φ, one should take c = −1/2. Thus,

Lm =
1

2
∂µφ ∂

µφ− 1

2
m2φ2 − λ

4!
φ4.

The equation of motion is now

�φ+m2φ+
λ

3!
φ3 = 0 .
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4. Energy-momentum tensor

a. Massless case:
(i) Compute the energy-momentum tensor T µν for the Lagrangian (8) and explain why it is
conserved. Check by a direct calculation that it is indeed conserved.

Solution

Since the Lagrangian does not depend explicitly on the space-time coordinates, Noether’s
theorem states that the energy-momentum tensor

T µν =
δL

δ(∂µφ)
∂νφ − gµνL .

is conserved. It reads explicitly

T µν = ∂µφ ∂νφ− gµν
(

1

2
∂ρφ ∂

ρφ− λ

4!
φ4

)
.

Indeed, a direct computation show that

∂µT
µν = (�φ)(∂νφ) + (∂µφ)(∂µ∂

νφ)− (∂ν∂ρφ)(∂ρφ) +
λ

3!
φ3∂νφ =

(
�φ+

λ

3!
φ3

)
∂νφ = 0

after using the equation of motion derived in question 1.

(ii) Compute the trace T µµ of the energy-momentum tensor.

Solution

One gets

T µµ = (∂µφ)(∂µφ)− 2(∂ρφ)(∂ρφ) +
λ

3!
φ4 = −(∂µφ)(∂µφ) +

λ

3!
φ4 .

b. Massive case:
(i) Compute the energy-momentum tensor in the case of the massive Lagrangian (10). What
is the value of its divergence? Obtain this result by a direct calculation.

Solution

One gets immediately, from question 6. a., modifying appropriately the Lagrangian,

T µνm = ∂µφ ∂νφ− gµν
(

1

2
∂ρφ ∂

ρφ− 1

2
m2φ2 − λ

4!
φ4

)
.

Obviously, Noether’s theorem states that its divergence is 0. Directly, one has

∂µT
µν
m = (�φ)(∂νφ) + (∂µφ)(∂µ∂

νφ)− (∂ν∂ρφ)(∂ρφ) +m2φ ∂νφ+
λ

3!
φ3∂νφ

=

(
(� +m2)φ+

λ

3!
φ3

)
∂νφ = 0

after using the equation of motion derived in question 3.b.
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(ii) Compute the trace (Tm)µµ of the energy-momentum tensor.

Solution

One gets this time

(Tm)µµ = −(∂µφ)(∂µφ) + 2m2φ2 +
λ

3!
φ4 .

5. We now focus on the scale transformation (or dilation), defined as

x → x′ = bx , (11)

φ(x) → φ′(x′) =
φ(x)

b
. (12)

a. Show that under such a dilation, the Lagrangian (8) is modified as

Lb =
1

b4
L . (13)

Solution

Under such a transformation, ∂ → 1
b
∂ so that the transformed Lagrangian becomes

Lb =
1

b4
1

2
∂µφ ∂

µφ− λ

b4
φ4 =

1

b4
L .

b. Deduce that the action built from the Lagrangian (8) is invariant under the transformation
(11,12).

Solution

Since d4x→ b4d4x under this transformation, it is clear that∫
d4xL →

∫
b4d4xLb =

∫
d4xL .

c. Discuss the scale invariance of the action built from this modified Lagrangian. Comment
on the physical reason of such a behavior.

Solution

This new Lagrangian Lm does not anymore transform like L because of the mass term which
has a scale, and breaks the scale invariance of the action: this is due to the presence of the
dimensional scale provided by the mass.

8



6. Under a given transformation acting a priori both on space-time and field, we recall the
standard notation

x′µ = xµ + δxµ,
φ′(x′) = φ(x) + δφ(x) .

(14)

a. Show that for an infinitesimal dilation, one has

δxµ = εxµ , (15)
δφ = −εφ . (16)

Solution

With b = 1 + ε, the scale transformation (11,12) reads, for |ε| � 1,

x → x′ = (1 + ε)x ,

φ(x) → φ′(x′) =
φ(x)

1 + ε
∼ φ(x)− εφ(x) ,

leading to the expected result for δxµ and δφ.

b. Construct the conserved current built from the above transformation acting on the La-
grangian (8), and deduce that the current

Jµ = −φ∂µφ−
(
∂µφ ∂νφ− gµν

(
1

2
∂ρφ ∂

ρφ− λ

4!
φ4

))
xν (17)

is conserved. Simplify the expression of this current by using the energy-momentum tensor.
Show the conservation of this current directly.

Solution

The action built from the Lagrangian (8) being scale invariant, one should simply use the
Noether theorem, which states that the current

jµ =
δL

δ(∂µφ)
δφ−

(
δL

δ(∂µφ)
∂νφ − gµνL

)
δxν

= −εφ ∂µφ−
(
∂µφ ∂νφ− gµν

(
1

2
∂ρφ ∂

ρφ− λ

4!
φ4

))
εxν

which implies that, ε being arbitrary, the current (17) is conserved. Note that it can be
rewritten as

Jµ = −φ∂µφ− T µνxν
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Directly, one has

∂µJ
µ = −(∂µφ)(∂µφ)− φ�φ− (∂µT

µν)xν − T µµ = −(∂µφ)(∂µφ)− φ�φ− T µµ

after using the conservation of the energy-momentum tensor. Besides, using the result of
question 4.a.(i), one obtains

∂µJ
µ = −(∂µφ)(∂µφ)− φ�φ+ (∂µφ)(∂µφ)− 2m2φ2 − λ

3!
φ4

= −φ�φ− λ

3!
φ4 = −φ

(
�φ+

λ

3!
φ3

)
= 0 ,

after using the equation of motion.

c. In the case of the massive Lagrangian (10), explain why the generalization of the current
(17) is still of the form

Jµm = −φ∂µφ− T µνm xν .

Is it still conserved? Compute its divergence.

Solution

We now have

jµm =
δLm
δ(∂µφ)

δφ−
(

δLm
δ(∂µφ)

∂νφ − gµνLm
)
δxν

= −εφ∂µφ− T µνm εxν

= −εφ ∂µφ−
(
∂µφ ∂νφ− gµν

(
1

2
∂ρφ ∂

ρφ− 1

2
m2φ2 − λ

4!
φ4

))
εxν

and thus

Jµm = −φ ∂µφ−
(
∂µφ ∂νφ− gµν

(
1

2
∂ρφ ∂

ρφ− 1

2
m2φ2 − λ

4!
φ4

))
xν

= −φ∂µφ− T µνm xν .

Its divergence does not vanish since the scale transformation does not leave the action in-
variant anymore, see 5.c. Let us compute this divergence directly. The first step is the same
as in the massless case:

∂µJ
µ
m = −(∂µφ)(∂µφ)− φ�φ− (∂µT

µν)xν − T µµ = −(∂µφ)(∂µφ)− φ�φ− T µµ

after using the conservation of the energy-momentum tensor. Besides, using the result of
question 4.b.(i), one now obtains

∂µJ
µ
m = −(∂µφ)(∂µφ)− φ�φ+ (∂µφ)(∂µφ)− 2m2φ2 − λ

3!
φ4

= −φ�φ− 2m2φ2 − λ

3!
φ4 = −φ

(
�φ+

λ

3!
φ3

)
−m2φ2 = −m2φ2 ,

after using the equation of motion. As expected, it vanishes when m = 0.
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7. We wish to construct a modified energy-momentum tensor and a modified dilation current
to get a simple relation between the trace of the energy-momentum tensor and divergence
of the current, valid for arbitrary values of m.

a. Show that

φ ∂σφ = −1

6
gρτ [gτσ∂ρ − gτρ∂σ]φ2. (18)

Solution

This is obvious, if one starts from the r.h.s., indeed:

−1

6
gρτ [gτσ∂ρ − gτρ∂σ]φ2 = −1

6
[∂σ − 4 ∂σ]φ2 =

1

2
∂σφ2 = φ ∂σφ .

b. Using the two properties gρτ = ∂ρxτ and (∂X)Y = ∂(XY )−X(∂Y ), prove that

φ ∂σφ =
1

6
xτ
[
gτσ�φ2 − gτρ∂ρ∂σφ2

]
− ∂ρXσρ (19)

with

Xσρ =
1

6

(
xσ∂ρφ2 − xρ∂σφ2

)
. (20)

Solution

One gets

−1

6
gρτ [gτσ∂ρ − gτρ∂σ]φ2 = −1

6
(∂ρxτ ) [gτσ∂ρ − gτρ∂σ]φ2

=
1

6
xτ∂ρ

[
gτσ∂ρφ2 − gτρ∂σφ2

]
− 1

6
∂ρ
[
xσ∂ρφ2 − xρ∂σφ2

]
=

1

6
xτ
[
gτσ�φ2 − gτρ∂ρ∂σφ2

]
− ∂ρXσρ .

c. We define the modified dilation current as

J̃σm = Jσm − ∂ρXσρ . (21)

Show that

J̃σm = −θστm xτ (22)

with the modified energy-momentum tensor

θστm = T στm +Rστ , (23)

where

Rστ =
1

6

[
gστ�φ2 − ∂σ∂τφ2

]
. (24)
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Solution

We have, combining 6.c. and 7.b.,

Jσm = −φ∂σφ− T στm xτ

= −1

6
xτ
[
gτσ�φ2 − gτρ∂ρ∂σφ2

]
+ ∂ρX

σρ − T στm xτ

and thus

J̃σm = Jσm − ∂ρXσρ = −θστm xτ .

d. Compare the divergence of this modified current with the one of Jσm.

Solution

The tensor Xσρ is antisymmetric, therefore, since ∂σ∂ρ is symmetric, we have ∂σ∂ρXσρ = 0 ,
so that ∂σJ̃σm = ∂σJ

σ
m.

e. Show that the modified energy-momentum tensor θστm has the same key properties as T στm :

(i) Show that θστm is conserved.

Solution

The tensor Rστ is conserved, since

∂σR
στ =

1

6
∂σ
[
gστ�φ2 − ∂σ∂τφ2

]
= ∂τ�φ2 − ∂τ�φ2 = 0.

This implies that θστm = T στm +Rστ is conserved since T στm is conserved.

(ii) Show that θστm is symmetric.

Solution

The tensor Rστ is obviously symmetric. Besides, T στm is symmetric, either from its explicit
expression, see 4.b.(i), or from the fact that this is automatic for a spinless field from the
conservation of the Noether current built from Lorentz invariance, see tutorial. Therefore,
θστm is symmetric.

For the next two questions, since the space volume V extends to infinity, for convenience, it
can be taken to have the form of a box with positions of rectangle boundaries at xi = ±∞.

(iii) Show that θστm and T στm lead to the same total 4-momentum.
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Solution

The two total 4-momenta, associated with T στm and θστm , respectively read

P τ =

∫
V

d3xT 0τ
m

and

P̃ τ =

∫
V

d3x θ0τm .

Let us consider their difference

P̃ τ − P τ =

∫
V

d3xR0τ =

∫
V

d3x
1

6

[
g0τ�φ2 − ∂0∂τφ2

]
.

- First case: τ = 0, then obviously the integrand vanishes, and thus P̃ 0 − P 0 = 0 .
- Second case: τ = i 6= 0, then, assuming that the space volume is a box, and denoting
d3x = dxid

2S, and S(xi) a rectangle in the plane orthogonal to the direction i, at position
xi, ∫

V

d3xR0i = −1

6

∫
V

d3x ∂0∂iφ2

= −1

6
∂0
∫
V

d3x ∂iφ2

= −1

6
∂0
[∫

S(xi=+∞)

d2S φ2 −
∫
S(xi=−∞)

d2S φ2

]
= 0

using the fact that φ is supposed to be fast decreasing at infinity, so that P̃ i − P i = 0 .
Thus, P̃ τ = P τ .

(iv) Show that θστm and T στm lead to the same total angular momentum.

Solution

The two total angular momentum, associated with T στm and θστm , respectively read

Mµν =

∫
V

d3x
[
xµT 0ν

m − xνT 0µ
m

]
and

M̃µν =

∫
V

d3x
[
xµθ0νm − xνθ0µm

]
,

thus differing from the quantity (which is by the way itself a conserved charge as the difference
of two conserved charges)

M̃µν −Mµν =

∫
V

d3x
[
xµR0ν − xνR0µ

]
=

∫
V

d3x
[
xµ
(
g0ν�φ2 − ∂0∂νφ2

)
− xν

(
g0µ�φ2 − ∂0∂µφ2

)]
.
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- First case: µ = i, ν = j 6= i, then the above integral reads∫
V

d3x
[
−xi∂0∂jφ2 + xj∂0∂

iφ2
]

= −∂0
∫
V

d3x ∂j(xiφ2) + ∂0

∫
V

d3x ∂i(xjφ2) = 0 ,

indeed each of these two integrals is a total derivative and using the same argument as in
the previous question, they both vanish. Thus M̃ ij −M ij = 0 .
- Second case: µ = 0, ν = i, then the above integral reads

−
∫
V

d3x x0∂0∂
iφ2 = −x0∂0

∫
V

d3x ∂iφ2 = 0

again using the same argument (note that since this is a conserved charge, it can thus be
computed at an arbitrary time, say x0 = 0, which makes this vanishing straightforward).
Thus, M̃0i −M0i = 0 .
In conclusion, M̃µν = Mµν .

f. Show that the two currents Jσ and J̃σ have the same associated charge.

Solution

The charge associated to J̃σ reads∫
d3x J̃0 =

∫
V

d3x J0 −
∫
V

∂ρX
0ρ d3x =

∫
V

d3x J0 −
∫
V

∂iX
0i d3x

=

∫
V

d3x J0 −
∫
S∞

X0i d2Si =

∫
V

d3x J0

where we have used the antisymmetry of Xρσ for the second equality, and the Green-
Ostrogradsky theorem for the third equality (d2~S is the 2d-elementary surface). The final
equality uses the fact that field are supposed to be fast decreasing at infinity, so that the
flux vanishes on S∞.

g. Relation between the trace of θστm and the conservation of J̃σ

(i) Show by a direct computation that the trace of θστm reads

(θm)µµ = m2φ2. (25)

Solution

From θστm = T στm +Rστ we have

(θm)µµ = (Tm)µµ +Rµ
µ

with

Rµ
µ =

1

6

[
gµµ�φ

2 −�φ2
]

=
1

2
�φ2 =

1

2
(∂µ∂

µ)φ2 = ∂µ[φ∂µφ] = (∂µφ ∂
µφ) + φ�φ .
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and thus, from 4.b.(ii),

(θm)µµ = −(∂µφ)(∂µφ) + 2m2φ2 +
λ

3!
φ4 + (∂µφ ∂

µφ) + φ�φ

= 2m2φ2 +
λ

3!
φ4 + φ�φ = φ

[
(� +m2)φ+

λ

3!
φ3

]
+m2φ2 = m2φ2 ,

where we have used the equation of motion satisfied by φ.

(ii) Relate finally the trace of the modified energy-momentum tensor θστm with the divergence
of Jσm and check the value of the trace of θστm . Conclude by providing a criterion on the tensor
θστm for a scalar field theory to be scale invariant.

Solution

From the relation (22) and using the conservation of θστm , one immediately gets

∂σJ
σ
m = ∂σJ̃

σ
m = −(θm)µµ ,

and thus, using question 6.c.,

(θm)µµ = m2φ2

in agreement with the previous question.
In conclusion,

∂σJ
σ
m = 0⇐⇒ (θm)µµ = 0
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