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Amplitudes

In the whole problem, “electron” and “positron“ should be understood as scalar particle of
charge e = −|e| and |e| respectively.

0. Preliminary

(a) The feynman rule for the spinless electron-photon vertex is known to be

µ

p1 p2

= ie(p1 + p2)
µ .

Explain why the feynman rule for the spinless positron-photon vertex is

µ

e+(p1) e+(p2)

=

µ

e−(−p1) e−(−p2)

= ie(−p1 − p2)
µ .

Solution

Relying on the antiparticle prescription, we know that a positron of momentum p propagating
forward in time is equivalent to an electron of momentum −p propagating backward in time.
The Feynman rule is then obvious.

1. We consider the process

e−(pA) e
−(pB) → e−(pC) e

−(pD) . (1)

(a) At lowest order in perturbation theory, how many Feynman diagrams can be drawn?
Draw them.

Solution
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There are two diagrams:

pA pC

pB pD

pA

pDpB

pC

(b) Write the scattering amplitude Me−e−→ e−e− of this process.

Solution

We have

iMe−e−→ e−e−(pA, pB, pC , pD)

= (ie)(−i)(ie)

[

(pA + pC)
µ gµν
(pD − pB)2

(pB + pD)
ν + (pA + pD)

µ gµν
(pB + pC)2

(pB + pC)
ν

]

= ie2
[

(pA + pC) · (pB + pD)

(pD − pB)2
+

(pA + pD) · (pB + pC)

(pC − pB)2

]

.

2. We consider the process

e−(pA) e
+(pB) → e−(pC) e

+(pD) . (2)

(b) At lowest order in perturbation theory, how many Feynman diagrams can be drawn?
Draw them, using only electron lines, relying on the antiparticle prescription.

Solution

There are two diagrams. Using the antiparticle prescription, which says that an antiparticle
of momentum p propagating forward in time is equivalent to a particle of momentum −p
propagating backward in time, they should be drawn as

pA pC

−pB −pD

pA pC

−pB −pD
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(c) Write the scattering amplitude Me−e+→ e−e+ of this process.

Solution

We have

iMe−e+→ e−e+(pA, pB, pC, pD)

= (ie)(−i)(ie)

[

(pA + pC)
µ gµν
(pD − pB)2

(−pB − pD)
ν + (pA − pB)

µ gµν
(pC + pD)2

(pC − pD)
ν

]

= ie2
[

(pA + pC) · (−pB − pD)

(pD − pB)2
+

(pA − pB) · (pC − pD)

(pC + pD)2

]

.

3. Due to the antiparticle prescription, we know that for an arbitrary particle P , the set
P (p)P̄ (−p) is the same as the vacuum. Starting from an arbitrary 2 → 2 process generically
written as

A(pA)B(pB) → C(pC)D(pD) (3)

and adding on the left hand side a particle-antiparticle pair of a suitable type, and on the
right hand side another particle-antiparticle pair of different type, show that this process is
equivalent to the process

A(pA) D̄(−pD) → C(pC) B̄(−pB) (4)

and thus that

MAB→CD(pA, pB, pC, pD) = MAD̄→CB̄(pA,−pD, pC ,−pB) , (5)

a property known under the name of crossing symmetry.

Solution

One should simply add D(pD)D̄(−pD) in the left hand side, and B(pB)B̄(−pB) in the right
hand side, so that the process (3) is identical to

A(pA)D(pD)D̄(−pD)B(pB) → C(pC)B(pB)B̄(−pB)D(pD)

so that removing the state B(pB)D(pD) from both left and right hand sides, we obtain the
process

A(pA) D̄(−pD) → C(pC) B̄(−pB) ,

which proves that the processes (3) and (4) are identical, so that they are described by the
same scattering amplitudes.

3



4. Compare the two amplitudes

Me−e+→ e−e+(pA, pB, pC , pD)

and
Me−e−→ e−e−(pA,−pD, pC ,−pB) .

Comment and explain why this should be expected.

Solution

From the two results of questions 1. and 2., we readily have

Me−e−→ e−e−(pA,−pD, pC ,−pB) = e2
[

(pA + pC) · (−pD − pB)

(−pB + pD)2
+

(pA − pB) · (pC − pD)

(pC + pD)2

]

= Me−e+→ e−e+(pA, pB, pC , pD) ,

so that these two amplitudes are equal. This is simply due to the above crossing symmetry.

5. We introduce the three Mandelstam variables

s = (pA + pB)
2 (6)

t = (pA − pC)
2 (7)

u = (pA − pD)
2. (8)

(a) Show that we also have

s = (pC + pD)
2 (9)

t = (pB − pD)
2 (10)

u = (pC − pB)
2. (11)

Solution

This is obvious using energy-momentum conservation pA + pB = pC + pD .

(b) Translate the crossing discussed in question 4. in terms of the exchange of two variables
among s, t, u. Deduce a relation between the amplitudes of the two processes when expressed
as functions of s, t, u.

Solution

Passing from

A(pA)B(pB) → C(pC)D(pD)
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to

A(pA) D̄(−pD) → C(pC) B̄(−pB)

corresponds to the exchange s ↔ u. Therefore, the equality

MAB→CD(pA, pB, pC, pD) = MAD̄→CB̄(pA,−pD, pC ,−pB) ,

can also be written as

MAB→CD(s, t, u) = MAD̄→CB̄(u, t, s) .

(c) Find another crossed reaction involving the exchange of another subset of two variables
among s, t, u, and provide the relation between the two amplitudes, expressed as functions
of momenta, and then expressed as functions of Mandelstam variables.

Solution

Passing from

A(pA)B(pB) → C(pC)D(pD)

to

A(pA) C̄(−pC) → B̄(−pB)D(pD)

corresponds to the exchange s ↔ t. It means that

MAB→CD(pA, pB, pC, pD) = MAC̄→B̄D(pA,−pC ,−pB, pD) ,

can also be written as

MAB→CD(s, t, u) = MAC̄→B̄D(t, s, u) .

6. Explicit expressions of the amplitudes and crossing properties

(a) Compute the scattering amplitude of the process (1) as a function of e2, s, t, u.

Solution

We have

(pA + pC) · (pB + pD) = pA · pB + pA · pD + pC · pB + pC · pD
=

1

2

[

s−m2

A −m2

B +m2

A +m2

D − u+m2

C +m2

B − u+ s−m2

C −m2

D

]

= s− u

and

(pA + pD) · (pB + pC) = pA · pB + pA · pC + pD · pB + pD · pC
=

1

2

[

s−m2

A −m2

B +m2

A +m2

C − t +m2

B +m2

D − t+ s−m2

C −m2

D

]

= s− t

so that

Me−e−→ e−e−(pA, pB, pC , pD) = e2
[

s− u

t
+

s− t

u

]
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(b) Compute the scattering amplitude of the process (2) as a function of e2, s, t, u.

Solution

We have, from the previous question,

(pA + pC) · (−pB − pD) = u− s

and

(pA − pB) · (−pD + pC) = −pA · pD + pA · pC + pB · pD − pB · pC
=

1

2

[

u−m2

A −m2

D +m2

A +m2

C − t+m2

B +m2

D − t + u−m2

C −m2

B

]

= u− t

so that

Me−e+→ e−e+(pA, pB, pC , pD) = e2
[

u− s

t
+

u− t

s

]

.

(c) Crossing properties:

(i) Comment on s, t, u crossing properties of the two diagrams involved in the process (1).

Solution

The two diagrams are conjugated through t ↔ u crossing. This is indeed satisfied by the
obtained amplitudes, see question 6. (a).

(ii) Comment on s, t, u crossing properties of the two diagrams involved in the process (2).

Solution

The two diagrams are conjugated through s ↔ crossing. This is indeed satisfied by the
obtained amplitudes, see question 6. (b).

(iii) Comment on s, t, u crossing properties between the two processes (1) and (2).

Solution

The two amplitudes are conjugated through s ↔ u crossing. This is indeed satisfied by the
obtained amplitudes, see questions 6. (a) and 6. (b), and it is also true diagram per diagram.
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7. Kinematics in the center-of-mass frame.

We now consider the center-of-mass frame, and we denote ~pi = ~pA = −~pB and ~pf = ~pC =
−~pD , and p∗i = |~pi| and p∗f = |~pf |.

(a) Explain why p0A = p0B =
√
s/2 and p0C = p0D =

√
s/2.

Solution

Since in the c.m.f, ~pA+~pB = 0, one denotes ~pi = ~pA = −~pB, and similarly, due to ~pC+~pD = 0,
one denotes ~pf = ~pC = −~pD, which implies that

p2A = (p0A)
2 − p∗ 2i = m2

e and p2B = (p0B)
2 − p∗ 2i = m2

e ,

as well as

p2C = (p0C)
2 − p∗ 2f = m2

e and p2D = (p0D)
2 − p∗ 2f = m2

e ,

so that p0A = p0B and thus, since s = (pA + pB)
2 = (pC + pD)

2 = (p0A + p0B)
0 = (p0C + p0D)

0, we
get p0A = p0B =

√
s/2 and p0C = p0D =

√
s/2.

(b) Show that p∗i = p∗f .

Solution

This is obvious from

(p0A)
2 − p∗ 2i = m2

e = (p0C)
2 − p∗ 2f

with p0A = p0C .

(c) We denote k = p∗i = p∗f and introduce the scattering angle θ, i.e. the angle between ~pi
and ~pf .

(i) Show that

s = 4m2 + 4k2 . (12)

Solution

We have

s = 4(p0A)
2 = 4m2 + 4k2 .
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(ii) Show that

t = −2k2(1− cos θ) . (13)

Solution

One can choose the unit vector ~ux so that (~ux, ~uz) is a basis of the reaction plane. Then

pA = (p0A, 0, 0, k)

pB = (p0A, 0, 0,−k)

pC = (p0A, k sin θ, 0, k cos θ)

pD = (p0A,−k sin θ, 0,−k cos θ)

thus

pA · pC = (p0A)
2 − k2 cos θ

so that

t = (pA − pC)
2 = p2A + p2C − 2pA · pC = 2m2 − 2(p0A)

2 + 2k2 cos θ = −2k2(1− cos θ) .

(iii) Show that

u = −2k2(1 + cos θ) . (14)

Solution

We have

pA · pD = (p0A)
2 + k2 cos θ

so that

u = (pA − pD)
2 = p2A + p2D − 2pA · pD = 2m2 − 2(p0A)

2 − 2k2 cos θ = −2k2(1 + cos θ) .

8. Cross-sections

(a) Write the differential cross-section dσ/dΩ in the center-of-mass frame for the process (1)
as a function of s, t, u, introducing the fine structure constant

αem =
e2

4π
.

Solution
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Since e4 = 16π2α2
em, we thus get

dσe−e−→ e−e−

dΩ

∣

∣

∣

∣

∣

c.m.f

=
α2
em

4s

[

s− u

t
+

s− t

u

]2

.

(b) Write the differential cross-section dσ/dΩ in the center-of-mass frame for the process (2)
as a function of s, t, u.

Solution

Similarly, we get

dσe−e+→ e−e+

dΩ

∣

∣

∣

∣

∣

c.m.f

=
α2
em

4s

[

u− s

t
+

u− t

s

]2

.

(c) Write the two above cross-sections as functions of k2 and cos θ.

Solution

One gets

dσe−e−→ e−e−

dΩ

∣

∣

∣

∣

∣

c.m.f

=
α2
em

4(m2 + k2)

[

m2 + 2k2

k2(1− cos θ)
+

m2 + 2k2

k2(1 + cos θ)
− 1

]2

and

dσe−e+→ e−e+

dΩ

∣

∣

∣

∣

∣

c.m.f

=
α2
em

16(m2 + k2)

[

2
m2 + 2k2

k2(1− cos θ)
+

k2 cos θ

m2 + k2
− 1

]2

.

(d) Comment on the behavior of the cross-section for the process e−e− → e−e− when θ → 0
or θ → π. What is the technical origin of this? Can one find a physical explanation?

Solution

The cross-section has a (divergent) peak from the term 1/(1 − cos θ) when θ → 0 (forward
peak) and a (divergent) peak from the term 1/(1 + cos θ) when θ → π (backward peak).
They respectively come from the pole contribution in 1/t in the diagram with a t-channel
photon exchange (for θ → 0) and from the pole contribution in 1/u in the diagram with a u-
channel photon exchange (for θ → π). Indeed, the virtual photon then goes to its mass shell.
In the c.m.f, since the t-channel photon and the u−channel photon are purely space-like, it
means from the Heisenberg uncertainty principle that since its 3-momentum goes to zero, its
interaction range goes to infinity (just like a real photon), which leads to large cross-sections.
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