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Introduction

Dealing wtih QCD is theoretically challenging

How to deal with QCD?
example: Compton scattering

virtual photon (v*)

= probe photon

hadron hadron

Aim: describe M by separating:

@ quantities non-calculable perturbatively
some tools:

@ Discretization of QCD on a 4-d lattice: numerical simulations
o AdS/CFT = AdS/QCD : AdSs5 x S® ++ QCD

@ pertubatively calculable quantities
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Introduction

Using perturbative QCD

Key question of QCD:
how to obtain and understand the tri-dimensional structure of hadrons
in terms of quarks and gluons?

@ The aim is to reduce the process to interactions involving a small number
of partons (quarks, gluons), despite confinement

@ This is possible if the considered process is driven by short distance
phenomena (d < 1fm)
= a,; < 1: Perturbative methods

@ One should hit strongly enough a hadron
Example: electromagnetic probe and form factor

T electromagnetic interaction ™~ 7 parton life time after interaction

K T caracteristic time of strong interaction

To get such situations in exclusive reactions is very challenging
phenomenologically: the cross sections are very small
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Introduction

Using perturbative QCD

Hard processes in QCD

@ This is justified if the process is governed by a hard scale:

o virtuality of the electromagnetic probe
in elastic scattering e*p — et p
in Deep Inelastic Scattering (DIS) e*p — e+ X
in Deep Virtual Compton Scattering (DVCS) eTp — e p~y

@ Total center of mass energy in eTe™ — X annihilation
@ t-channel momentum exchange in meson photoproduction vyp — M p

@ A precise treatment relies on factorization theorems

@ The scattering amplitude is described by the convolution of the partonic
amplitude with the non-perturbative hadronic content




Introduction

DIS

Accessing the perturbative proton content using inclusive processes
no 1/Q suppression

example: DIS

hard partonic process

Syxp = (qf; +pp)2 = 4E‘C2m

QQ

—qg* >0

2pp~q,’; T Syxp

@ xp = proton momentum fraction carried by the scattered quark

@ 1/Q = transverse resolution of the photonic probe < 1/Agcp
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Introduction

BIN)
The various regimes governing the perturbative content of the proton

Y=ini 1 A SATURATION
REGION
In QS(V)
BK JIMWLK
+ BFKL

".'"\ DGLAP //\

oy > (Y

Ao InQ?

y

@ "usual” regime: xp moderate ( xp 2 .01):
Evolution in @) governed by the QCD renormalization group
(Dokshitser, Gribov, Lipatov, Altarelli, Parisi equation)

Yalas Q)" + as 3, (as Q)"
LLQ NLLQ
@ perturbative Regge limit: s,+, — o0 i.e. 25 ~ Q%/syp — 0

in the perturbative regime (hard scale Q?)
(Balitski Fadin Kuraev Lipatov equation)

Sa(as ns)" 4 an Y, (as ns)" +

LLs NLLs 6/52



Introduction

QCD in the perturbative limit

@ One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s > —¢

@ Based on theoretical grounds, one should identify and test suitable
observables in order to test this peculiar dynamics

t
ha(M?) (M)
<— vacuum quantum
S —
number
ha(M3) hy (M)

hard scales: M7, M3 > Adop or Mi?, M5® > Adep or t > Adep
where the t—channel exchanged state is the so-called hard Pomeron
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Introduction

How to test QCD in the perturbative limit?

What kind of observable?

9 perturbation theory should be applicable:
selecting external or internal probes with transverse sizes < 1/Agcp
(hard v*, heavy meson (J/¥, T), energetic forward jets) or by choosing

large t in order to provide the hard scale.
p—0

@ governed by the "soft" perturbative dynamics of QCD \Frrfi(

m =0
and not by its collinear dynamics ‘rr‘r‘&i/e =0
m=0

— select semi-hard processes with s > p%,; > AQQCD where p%; are
typical transverse scale, all of the same order.
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Introduction

How to test QCD in the perturbative limit?

Some examples of processes

@ inclusive: DIS (HERA), diffractive DIS, total v*~v™ cross-section (LEP,
ILC)
@ semi-inclusive: forward jet and 7° production in DIS, Mueller-Navelet

double jets, diffractive double jets, high pr central jet, in hadron-hadron
colliders (Tevatron, LHC)

9 exclusive: exclusive meson production in DIS, double diffractive meson
production at eTe™ colliders (ILC), ultraperipheral events at LHC
(Pomeron, O@dderon)
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Introduction

Resummation in QCD:;

Small values of as (perturbation theory applies if there is a hard scale) can be
compensated by large logarithmic enhancements.

DGLAP BFKL

krn+1 < krn z1, kr1 Tnt1 K Tn z1, kr1

xr2, kTZ xr2, kTZ

strong ordering in kp strong ordering in x

> (e In Q)" S(aslns)™

When /s becomes very large, it is expected that a BFKL description is needed
to get accurate predictions
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Introduction
The specific case of QCD at large s

QCD in the perturbative Regge limit

The amplitude can be written as:

T TT) . (E)

~ ~ s(aslns) ~ 5 (as Ins)?

this can be put in the following form :

< Impact factor

hy he vnythi 1 »(0)—1
, - tloltzzﬁany hing __ _ImANSw[( )
< Green’s function

with ap(0) =1 = C s +C' a2 +
+ Impact factor C > 0: Leading Log Pomeron
Balitsky, Fadin, Kuraev, Lipatov
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Introduction

Opening the boxes: Impact representation

@ Sudakov decomposition: k; = a;p1 + Bip2 + kii (3 =p3 =0, 2p1 - p2 = s)
@ write dki = £ daidBid’kyi (&= Eud. & ki = Mink.)

up/down

@ t—channel gluons have non-sense polarizations at large s: €47/ =2py

=setan =0and [dB = & 7 (k;,r — k)
impact factor

, 2 2K
_ 18 d Eéup(k./ E—E)/ d E q)dn’w'n,(_k/ _E_‘—&l)

2m)2) K E? -
S+ico
x / do (516 (kK ,r)
271 \_So WA~
§—ioco

+— multi-Regge kinematics

= set By =0and [da, = & 7 (<k,,-r+k,)
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Introduction

Higher order corrections

@ Higher order corrections to BFKL kernel are known at NLL order (Lipatov
Fadin; Camici, Ciafaloni), now for arbitrary impact parameter
as Y, (as Ins)™ resummation

@ impact factors are known in some cases at NLL

¢ v* — 4* at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao;
Balitski, Chirilli)

o forward jet production (Bartels, Colferai, Vacca;
Caporale, Ivanov, Murdaca, Papa, Perri;
Chachamis, Hentschinski, Madrigal, Sabio Vera)

¢ inclusive production of a pair of hadrons separated by a large interval of
rapidity (Ivanov, Papa)

@ 7] — pr in the forward limit (Ivanov, Kotsky, Papa)
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MN jets at full NLLx

o0

Mueller-Navelet jets: Basics

Mueller-Navelet jets

@ Consider two jets (hadrons flying within a narrow cone) separated by a
large rapidity, i.e. each of them almost fly in the direction of the hadron
“close” to it, and with very similar transverse momenta

@ Pure LO collinear treatment: these two jets should be emitted back to
back at leading order:
e p=A¢p—7=0 (A¢p = ¢1 — ¢p2 = relative azimuthal angle)
o kj1=Fk,o. No phase space for (untagged) multiple (DGLAP) emission
between them

p(mw

large - rapidity
| Jeta (ki2, ¢2)

Beam axis

"_'f(; . zero rapidity
5 —

large + rapidity
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MN jets at full NLLx
oe

fails

jets at

Mueller Navelet jets at LL BFKL

in LL BFKL (~ > (asIns)™),
emission between these jets
— strong decorrelation
between the relative azimutal
angle jets, incompatible

with pp Tevatron collider data

a collinear treatment
at next-to-leading order
(NLO) can describe the data

important issue:
non-conservation

of energy-momentum

along the BFKL ladder.

A LL BFKL-based

Monte Carlo combined

with e-m conservation
improves dramatically

the situation (Orr and Stirling)

jety
collinear
parton
(PDF)
rapidity gap
LL BFKL
rapidity gap

Green function

collinear
arton

P
(PDF)
T S

Multi-Regge kinematics
(LL BFKL)
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MN jets at full NLLx
©000000000

Studies at LHC;

Mueller Navelet jets at NLL BFKL

@ up to now, the

collinear

jet; NLL jet vertex

subseries as Y (s Ins)™ (";B‘I’:’;
NLL was included rapidity gap
only in the exchanged
Pomeron state, and
not inside the jet vertices i NLL BFKL
Sabio Vera, Schwennsen rapidity gap Green function
Marquet, Royon
@ the common belief c::',:::r
was that these corrections (PDF) jety NLL jet vertex

should not be important

Quasi Multi-Regge kinematics (here for NLL
BFKL)
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MN jets at full NLLx
0®00000000

Master formulas

kr-factorized differential cross section

do
= [ dpsd d?k; d?k
dlks1| dlks2|dys1 dyse /%1 ¢J2/ e

ki, ¢s1, 201 X ®(ky1,z1, —ki)

X G(k1,k2,§)

k2, ds2, T 52 X ®(kyo, xy2,ko)

with ®(kjo, 252, ko) = [das f(z2)V(ke,x2)  f=PDF  zy = Kilews
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MN jets at full NLLx
00®0000000

Results

Results for a symmetric configuration

In the following we show results for

@ /s=T7TeV

9 35GeV < |kyi|, k2| < 60 GeV

e 0 <y, ly2| <4.7
These cuts allow us to compare our predictions with the first experimental data
on azimuthal correlations of Mueller-Navelet jets at the LHC presented by the

CMS collaboration (CMS-PAS-FSQ-12-002) and submitted... last week
(1601.06713 [hep-ex])

note: unlike experiments we have to set an upper cut on |ky1| and |kj2|. We have
checked that our results do not depend on this cut significantly.
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MN jets at full NLLx
000000000

Results: azimuthal correlations

Azimuthal correlation (cos ¢)

Ccos <p> = <COS(¢J1 - ¢12 - 7r)> recall: ¢ = 0 < back-to-back
1.2

35GeV < |kji| < 60GeV
35GeV < |kj2| < 60 GeV

0< ly1] <47
0 < |y2| < 4.7

LO vertex + NLL Green
NLO vertex + NLL Green fun.
CMS

| | | | | Y = |y —
04 5 6 7 8 9 ‘yl y2‘

The NLO corrections to the jet vertex lead to a large increase of the correlation

Note: LO vertex + NLL Green done by F. Schwennsen, A. Sabio-Vera; C. Marquet, C. Royon
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MN jets at full NLLx
0000@00000

Results: azimuthal correlations

Azimuthal correlation (cos ¢)

(cos ) = {cos(pj1 — P2 — 7)) recall: ¢ = 0 < back-to-back

35GeV < |kj1| < 60 GeV
35GeV < |kja| < 60 GeV

. 0<|y1| < 4.7
0< lyal <47

04 |- NLL BFKL =

02 - V50— /50/2 m
2T V50 = 24/350
+—e— CMS data 7

0 | | | | | Yy
4 5 6 7 8 9

@ NLL BFKL predicts a too small decorrelation

@ The NLL BFKL calculation is still rather dependent on the scales,
especially the renormalization / factorization scale
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MN jets at full NLLx
0000080000

Results: azimuthal correlations

Azimuthal correlation (cos 2¢)

(cos 2¢p) recall: ¢ = 0 < back-to-back

1 35GeV < |kyi1| < 60 GeV
: 35GeV < |ky2| < 60 GeV

0< |y1] <47
0 < |y2| < 4.7

NLL BFKL
n— /2
= 20
02 V50 = +/50/2 _
- e (/50 =3 2,/50
—e— CMS data i

0 | | | | | Y

4 5 6 7 8 9

@ The agreement with data is a little better for (cos2¢) but still not very
good

@ This observable is also very sensitive to the scales
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MN jets at full NLLx
000000@000

Results: azimuthal correlations

Azimuthal correlation (cos 2¢)/(cos ¢)

(cos2¢) /(cos p) recall: ¢ = 0 < back-to-back

12 T T T T T

= 1 35GeV < k1| < 60 GeV
- 35GeV < k2| < 60 GeV

0< |y1| <47
0< |y2| < 4.7

0.4 - —— NLL BFKL -
sttt opE = /2
e pup = 2up
02 T VE0 > VEo/2 ]
2 V50 — 250
—e— CMS data ]

0 | | | | | Y

4 5 6 7 8 9

@ This observable is more stable with respect to the scales than the previous
ones

@ The agreement with data is good across the whole Y range
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MN jets at full NLLx
0000000800

Results: azimuthal correlations

Azimuthal correlation (cos 2¢)/(cos ¢)

(cos 2¢) /(cos p) recall: ¢ = 0 < back-to-back
12 T T T T T

- 1 35GeV < k1| < 60 GeV
35GeV < |kj2| < 60 GeV

0< |y1| < 4.7
0< lyal <47

——— LO vertex + LL Green's fun. B
——— LO vertex + NLL Green’s fun.

0.2 — NLO vertex + NLL Green’s fun. -
| +~—=— CMS data ]
0 | | | | | Y
4 5 6 7 8 9

It is necessary to include the NLO corrections to the jet vertex to reproduce the
behavior of the data at large Y
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MN jets at full NLLx
0000000080

Results: azimuthal distribution

Azimuthal distribution (integrated over 6 < Y < 9.4)

T T T
NLL BFKL

n— /2
2

VS0 — 24/s0

CMS data

0.01 —

VET > V/Eo/2 -

——

recall: ¢ = 0 < back-to-back

1do

= % 1+2 Z cos (ngp) (cos (np))

n=1

@ Our calculation predicts a too large value of 192 for ¢ < T and a too
o ~ 2

small value for ¢ 2 %

de

9 It is not possible to describe the data even when varying the scales by a

factor of 2
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MN jets at full NLLx
000000000e

Results: limitations

@ The agreement of our calculation with the data for (cos2y)/(cos ¢) is
good and quite stable with respect to the scales

@ The agreement for (cosny) and %j—g is not very good and very sensitive

to the choice of the renormalization scale ur
@ An all-order calculation would be independent of the choice of ur. This
feature is lost if we truncate the perturbative series
= How to choose the renormalization scale?
'Natural scale’: sometimes the typical momenta in a loop diagram are
different from the natural scale of the process

We decided to use the Brodsky-Lepage-Mackenzie (BLM) procedure to fix the
renormalization scale
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The

NLLx + BLM
o

renormalization scale fixing procedure

The Brodsky-Lepage-Mackenzie (BLM) procedure resums the self-energy
corrections to the gluon propagator at one loop into the running coupling.

First attempts to apply BLM scale fixing to BFKL processes lead to
problematic results. Brodsky, Fadin, Kim, Lipatov and Pivovarov suggested
that one should first go to a physical renormalization scheme like MOM and
then apply the "traditional’ BLM procedure, i.e. identify the 8y dependent part
and choose pr such that it vanishes.

We followed this prescription for the full amplitude at NLL.
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NLLx + BLM
[ Jelele)

Results with

Azimuthal correlation (cos ¢)

(cos p)
12 T T T T T
T -
- N\ A 35GeV < |kyi1| < 60 GeV
N
083 X 35GeV < |kj2| < 60GeV
L L i i i h
06 i } | 0<|y1| < 4.7
L _ 0 < |yz| < 4.7
04 |- .
IR— NLL BFKL _
NLL BFKL+BLM
0 I I I I I v
4 5 6 7 8 9

Using the BLM scale setting, the agreement with data becomes much better
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NLLx + BLM
o] le]e)

Results with

Azimuthal correlation (cos 2¢)

(cos 2¢)
12 T T T T
T NLL BFKL
NLL BFKL+BLM
- —— NS 35GeV < |ky1| < 60 GeV
08 [~ 35GeV < |kj2| < 60 GeV
T 0 <lyi| <4.7
L g N 0< |yz2| < 4.7
04 |- i : {
02 |-
0 | | | | v
4 5 6 7 8

Using the BLM scale setting, the agreement with data becomes much better.
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NLLx + BLM
ooeo

Results with

Azimuthal correlation (cos 2¢)/(cos ¢)

(cos 2¢)/ {cos )
12 T T T T T

E 35GeV < |kji| < 60 GeV
0.8 — — 35GeV < |kj2| < 60GeV

l o 0<|y1| < 4.7
4 0 < |yz2| < 4.7

o6f U= *— {_

04 .
L NLL BFKL _
o2 NLL BFKL+BLM B
—e— CMS
0 I I I I I Yy
4 5 6 7 8 9

Because it is much less dependent on the scales, the observable
(cos 2¢) /{cos p) is almost not affected by the BLM procedure and is still in
good agreement with the data.
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NLLx + BLM

[e]ele] ]
Results with

Azimuthal distribution (integrated over 6 < Y < 9.4)

1 do
o do
T T T T
1P~ ----- NLL BFKL —
AN NLL BFKL+BLM
L \\ —e— CMS
EAN

01

\ b

With the BLM scale setting the azimuthal distribution is in good agreement
with the data across the full ¢ range.
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BFKL vs fixed-order
[ ]

Comparison with fixed-order

Using the BLM scale setting:

@ The agreement (cosny) with the data becomes much better

@ The agreement for (cos2¢)/(cos ¢) is still good and unchanged as this
observable is weakly dependent on pur

9 The azimuthal distribution is in much better agreement with the data

But the configuration chosen by CMS with |k j1|min = |KJ2|min does not allow
us to compare with a fixed-order O(a?) treatment (i.e. without resummation)

@ These calculations are unstable when |Kji|min = |KJ2|min because the
cancellation of some IR divergencies is difficult to obtain numerically

@ Resummation effects a la Sudakov are important in the limit kj; ~ —k 2
and require a special treatment.

@ This resummation has been obtained at LL

A. H. Mueller, L. Szymanowski, S. W., B.-W. Xiao, F. Yuan, arXiv:1512.07127 [hep-ph]
o The evaluation of the magnitude of this effect remains to be done
o Beyond LL, it is presumably very tricky ...

@ This resummation is not available in fixed-order treatments
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BFKL vs fixed-order
[ Jele]e]

Comparison with fixed-order

Results for an asymmetric configuration

In this section we choose the cuts as
@ 35GeV < |kJ1| R |kJ2| < 60GeV
9 50 GeV < Max(|kj1], k2|

9 0 < |y],lye] <47

and we compare our results with the NLO fixed-order code Dijet (Aurenche,
Basu, Fontannaz) in the same configuration
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BFKL vs fixed-order
[o] le]e]

Comparison with fixed-order

Azimuthal correlation (cos ¢)

35GeV < |kji| < 60GeV

N ey 35GeV < |kja| < 60 GeV

50 GeV < Max(|kj1]|, |ksz2|)

0.6 - 7 0 < |yi| <4.7
i T 0 < |y2| < 4.7
0.4 |- —
Il —— NLO fixed-order 4
02 NLL BFKL+BLM |
0 L L L L L Y
4 5 6 7 8 9

The NLO fixed-order and NLL BFKL+BLM calculations are very close
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BFKL vs fixed-order
[e]e] Je]

Comparison with fixed-order

Azimuthal correlation (cos 2¢)

(cos2¢p)
12 T T T T T
1 —— NLO fixed-order |
NLL BFKL+BLM 35GeV < |kji| < 60GeV
08 35GeV < |kj2| < 60 GeV

50 GeV < Max(|kj1], |ksz2|)

06 \’/ 0< |y1| < 4.7

0 < |y2| < 4.7
04 —

0.2 — —

0 | | | | | Y

The BLM procedure leads to a sizable difference between NLO fixed-order and
NLL BFKL+BLM.
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BFKL vs fixed-order
[e]e]e] ]

Comparison with fixed-order

Azimuthal correlation (cos 2¢)/(cos ¢)

(cos2¢p) /(cos )
12 T T T T T

35GeV < |kji| < 60 GeV
35GeV < |kj2| < 60 GeV

0.8 —
\//ﬁ 50 GeV < Max(|k1], [k2|)

06 - e /T 0< |y1| < 4.7
I 0< |ya| < 4.7

04 |- —
[ NLL BFKL i

02 b — NLO fixed-order |

: NLL BFKL+BLM

0 I I I I I v

4 5 6 7 8 9

Using BLM or not, there is a sizable difference between BFKL and fixed-order.
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BFKL vs fixed-order
L]

Comparison with fixed-order

Cross section: 13 TeV vs. 7 TeV

013TeV /O7TeV
10000 ‘ ‘
|- NLL BFKL
—— NLO fixed-order /i 35GeV < |kji1| < 60 GeV
1000 NLL BFKL+BLM . 35GeV < |kjz2| < 60GeV

50 GeV < Max(|kj1]|, |ksz2|)

0< |y1| < 4.7
0< lyal <47

1 \ \ \ \ \ Y

9 In a BFKL treatment, a strong rise of the cross section with increasing
energy is expected.

@ This rise is faster than in a fixed-order treatment
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E-M conservation

Energy-momentum conservation

@ It is necessary to have K min1 # Kmin2 for comparison with fixed order
calculations but this can be problematic for BFKL because of
energy-momentum conservation

@ There is no strict energy-momentum conservation in BFKL

@ This was studied at LO by Del Duca and Schmidt. They introduced an

effective rapidity Yeg defined as
o238

oBFKL,0(a3)

Y =Y

BFKL

9@ When one replaces Y by Yeg in the expression of o and truncates to

O(a?), the exact 2 — 3 result is obtained
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E-M conservation

Energy-momentum conservation

We follow the idea of Del Duca and Schmidt, adding the NLO jet vertex contribution:

exact 2 — 3 BFKL

—/ . —/ .

large rapidity gap

— Y3 ——— ¥3

large rapidity gap
\ " \ "

one emission from the Green's function 4+ LO jet vertex

Y1 Y1
we have to take into Y3
account these additional + + large rapidity gap
O(a?) contributions: large rapidity gap
Y3
Y2 Y2

no emission from the Green’s function + NLO jet vertex
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E-M conservation

Energy-momentum conservation

Variation of Yeg/Y as a function
of kyo for fixed ky1 = 35 GeV (with
VE=TTeV, Y =8):

—— LO jet vertex
—— NLO jet vertex

0 L L L L k2 (Gev)
35 40 45 50 55 60

@ With the LO jet vertex, Yeg is much smaller than Y when k1 and k2
are significantly different

@ This is the region important for comparison with fixed order calculations

@ The improvement coming from the NLO jet vertex is very large in this
region

@ For kj1 =35 GeV and kj2 = 50 GeV, typical of the values we used for

comparison with fixed order, we get Yf,ff ~ (.98 at NLO vs. ~ 0.6 at LO
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MN jets within MPI
®00

Can Mueller-Navelet jets be a manifestation of multiparton interactions?

MN jets in the single partonic model MN jets in MPI

here MPI = DPS (double parton scattering)
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MN jets within MPI
o1 1o}

Can Mueller-Navelet jets be a manifestation of multiparton interactions?

single P ladder two PP ladders interferences

scaling: s°* (?7) s> 7?
@ The twist counting is not easy for MPI kinds of contributions at small x
9 k11,2 are not integrated = MPI may be competitive, and enhanced by
small-x resummation
@ Interference terms are not governed by BJKP (this is not a fully
interacting 3-reggeons system) (for BJKP, ap < 1 = suppressed) 0152



MN jets within MPI
ooe

A phenomenological test: the problem

@ Simplification: we neglect any interference contribution between the two
mecchanisms

@ How to evaluate the DPS contribution?

@ This would require some kind of "hybrid” double parton distributions, with

@ one collinear parton
o one off-shell parton (with some k)

@ Almost nothing is known on such distributions
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MN jets within MPI
©00

A phenomenological test: our ansatz

Mueller-Navelet jets production at LL accuracy Inclusive forward jet production

Factorized ansatz for the DPS contribution:

Ofwd Obwd
opps = ————
Oeff
Tevatron, LHC: et =~ 15 mb
To account for some discrepancy between various measurements, we take
Oet ~ 10 — 20 mb
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A phenomenological test: our ansatz

At LO for the jet vertex:

2
zypr+ypetk (y= :(T’I on-shell cond.)

unintegrated gluon distribution (UGD):

AC )

normalized according to:

[ dk*Fy(x, |k|) = zf4(x) (usual PDF)

inclusive forward jet cross-section:

do

Qg k2
dcoldyy ~ K@ O Jal@n) +Cafo(@i) 7 (s— |le)
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MN jets within MPI
ooe

A phenomenological test

@ We use CMS data at /s =7 TeV, 3.2 < |ys| < 4.7

@ We use various parametrization for the UGD

@ For each parametrization we determine the range of K compatible with
the CMS measurement in the lowest transverse momentum bin

do

Ty, [pb.GeV™']
10° T -
5 ]
10 3 Kmin  Kmaz
] KMS : 120 194
10 7 KMR: 105  1.69
A0 : 427 6.89

10° JH2013 : 244  3.94

102

KMR
- A0
10" F goood KS
I JH2013 setl
L L L

10° [k [GeV]
40 60 80 100 120 140
do «@ K>
Y gk . c LI BN
d|kJ|dyJ |kJ|xJ( Ff‘?(wJ)—’_ Afg(xJ))fg <51‘J7| J|)
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SPS vs DPS: Results

We will focus on four choices of kinematical cuts:
@ \/s=T7TeV, k1| = |ks2| = 35 GeV,

(like in the CMS analysis for azimuthal correlations of MN jets)
e /s=14TeV, |ks1| = |ks2| = 35 GeV,
9 /s =14 TeV, k1| = |ksz| = 20 GeV,
9 /s =14 TeV, |kj1| = |kj2| = 10 GeV  « highest DPS effect expected

parameters:
0 0<yjs1<47and —4.7<yj2<0
@ MSTW 2008 parametrization for PDFs

@ In the case of the NLL NFKL calculation, anti-k; jet algorithm with
R =0.5.
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MN jets within MPI
Oe000

SPS vs DPS: cross-sections

do

do . .
Ay "6V T L
T T
10 - b 10* - 4
10% - 4

v

e L
—u —u
NLL NLL
10 Fizzzzs s V=TT k| = [zl = 35 Gev 10° 7z pes VA= 1 TeV, [k = kel = 35 Gev -
I I 1 I I y I I I I I y
4 5 6 7 8 9 4 5 6 7 8 9

[nb.Gev 2]

do 2 do
— 97 [ap.Gev? R
T ay e A1k

007 2

10? 77 7/57;///7///2/// N
00
0 ///// // S /7 0 <L
10° L7 100
007
102 |- 102 |- B
10% B 10% —
— —
NLL 1 NLL
10° 7z pes VA= TV, [k = [kuel = 20 Gev — 10 77z pes VA= 1 TRV, [k = el = 10 GV —
1 1 1 1 1 v 1 I I 1 1 v
4 5 6 7 8 9 4 5 6 7 8 9
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SPS vs DPS: cross-sections (ratios)

opps/osps opps/osps

opps/on, SIS
ooes/on, ZZZ2 | VB =14 TeV, [ku| = [ksa| = 35 GV ovrs/oni EZZZ2)
1

opps /oL SIS

1 1 1 y 10° 1 1 1 1 y
7 8 9 4 5 6 7 8 9
apps/osps apps/Tsps
10“ T T ] 10“ T T T 7S
1 T T T
ot [ P /Tfrf'///g 10t AN I I IS i/ﬁ;f;?;i/i;f/i;é;
107 55 107 L
R QLR
R i IR I
N N\ SO
10° El 10° El
10* | E 10* | E
s /oL ] s /oL
VA= 1TV, [kl = [ksal =20 Gev s /oL ] VA= 1TV, k] = lz| = 10 Gev ops/onL
10° 1 1 1 1 y 10° 1 1 1 1 1 v
4 5 6 7 8 9 4 5 6 7 8 9
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MN jets within MPI
000@0

SPS vs DPS: Azimuthal correlations

{cos @) {cos )
12 T T 12 T T
sps ESSS) | SPS ESSSY
1B sps+ops 27221 1 sps+ors 27221

08 F

RS T
.08 LR

|- 2 - KX —
06 06 200
04 - - 04 - B
02 - - 02 - -
VA =TT, k| = uz| = 35 GeV 1 VE= 1TV, [k = [k
0 L L L L L Yy 0 L L L L L Y
4 5 6 7 8 9 4 5 6 7 8 9
(cos ) (cos )
12 T T 12 r r
EUCHINNNNN SPs
I SPS 4 DPS 4 1 SPS 4 DPS 4

VA= 1T, [k| = [zl = 20 Gev 1 VE= 1TV, k| = [k

0 I I I I I vy 0 I I I I I vy
4 5 6 7 8 9 4 5 6 7 8 9
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SPS vs DPS: Azimuthal distributions

MN jets within MPI
0000e

1o Ldo
odp odg
1 1
SPS [SSNXY SPS
SPS + DPS SPS + DPS
01|

VE=T TV, [kl = [ksal = 35 GeV
| I I

0 05 1 15 2 25 3 0 05 1 15 2 25 3
1do
ode

1 T T T

SPS

SPS+DPS ZZZZ

V=14 TV, fkoi| = [ka| = 20 GV
1 I 1 1

V=14 T, [k = [ksa = 10 GeV
1 1 1 1

@
0

05 1 15 2 25 3

0

1 15 2 25

8<Y <94

50 /52



Inclusive production of a forward J/1) + a backward jet

Color singlet mechanism Color octet mechanism
@ Hard scales: k; and M,y
@ Very promising at ATLAS (and CMS?)
@ To be studied: cross-section study and azimuthal correlation
Work in progress with LO vertex + NLO BFKL Green function
R. Boussarie, B. Ducloué, L. Szymanowski, S. W.
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Conclusion

Conclusions

@ We studied Mueller-Navelet jets at full (vertex + Green's function) NLL
BFKL accuracy and compared our results with the first data from the LHC

9 The agreement with CMS data at 7 TeV is greatly improved by using the
BLM scale fixing procedure

@ (cos2yp)/(cos p) is almost not affected by BLM and shows a clear
difference between NLO fixed-order and NLL BFKL in an asymmetric
configuration (this region is safer than the symmetric one...)

@ Energy-momentum conservation seems to be less severely violated with
the NLO jet vertex

@ We did the same analysis at 13 TeV: [see backup slides]
- Azimuthal decorrelations at 13 TeV vs 7 TeV are similar
- NLL BFKL predicts a stronger rise of the cross section with increasing
energy than a NLO fixed-order calculation
Measurement of the cross section at /s =7 or 8 TeV ?

@ We studied the effect of DPS contributions which could mimic the MN jet

o For cross-sections: The uncertainty on DPS is very large.
Still, cpps < ospg in the LHC kinematics
o For angular correlations: including DPS does not significantly modify our
NLL BFKL prediction
o For low k; and large Y, the effect of DPS can become larger than the
uncertainty on the NLL BFKL calculation.
One should focus on this region experimentally. 52/52
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Comparison: 13 TeV vs. 7 TeV

Azimuthal correlation (cos ¢)

{cos ) {cos o)
12 : 12 :
1h B 1 B
083 B 08 - B
H
L L4 i i L 4
06 i f— 06 —
04 — 0.4 — -
02 NLL BFKL+BLM - 02 - NLL BFKL+BLM —
| ——cms J L ]
0 I I I I I Y 0 I I I I I Y
4 5 6 7 8 9 4 5 6 7 8 9
Vs=TTeV Vs =13 TeV

The behavior is similar at 13 TeV and at 7 TeV
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Comparison: 13 TeV vs. 7 TeV

Azimuthal distribution (integrated over 6 < Y < 9.4)

1do
o de
T T T T
1 NLL BFKL+BLM
] —e— CMS
£
¥
01
t
0.01 -
| | | | |
0 0.5 1 15 2 25 3

Vs =T7TeV

0.1 |

0.01 —

T T T T
NLL BFKL+BLM

The behavior is similar at 13 TeV and at 7 TeV

0.5 1 15 2 25

Vs =13 TeV
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Comparison: 13 TeV vs. 7 TeV

Azimuthal correlation (cos 2¢)/(cos ¢)
(asymmetric configuration)

{cos 2i) /(cos ) {cos 26) /(cos )
12 T T 12 T T
1 — 1 -
0.8 X/« 08 \__\a
0.6 - — 0.6 -
04 — 0.4 — —
02 - NLL BFKL+BLM - 02 - NLL BFKL+BLM —
L — NLO fixed-order i L — NLO fixed-order 4
0 | | | | | Y 0 | | | | | Y
4 5 6 7 8 9 4 5 6 7 8 9
Vs=TTeV Vs =13 TeV

The difference between BFKL and fixed-order is smaller at 13 TeV than at 7
TeV
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Comparison: 13 TeV

Cross section

UI3T6V/U7T€V 013TeV /07T6V 013TeV /07T6V
12 30 = 3
41 | NLO fixed-order ; L+ NLO fixed-order 4 300 = +—— NLO fixed-order 4
+—— NLL BFKL+BLM | ——— NLL BFKL+BLM f —— NLL BFKL+BLM -
0L 4 & 7] 250 —
o n 200 -
s {1 20F E | |
8- -
L ] i L 4 150 — —
2L N L ]
t 1 B’ 7| 100 - -
6 - L | L ]
[ 1 50 — —
5 10
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Master formulas

It is useful to define the coefficients C,, as

C n

/d¢J1 d¢ 2 cos (n(qSJ1 — g2 — 7r))

X /ko1 d’ko ®(ky1, 251, —k1) G(k1, ka2, §) ®(ky2, 72, ko)

@ n =0 = differential cross-section

do

Co =
0 d|k 1| d|ks2| dy1 dyse

@ n > 0 = azimuthal decorrelation
¢,
Co
@ sum over n — azimuthal distribution

ldo 1 {1 +2 Z cos (ny) (cos (TL(,D))}

o dp 27

= (cos (n(¢1 — prz — ) = (cos(n))

n=1
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Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

b il/*i ind
o LL BFKL eigenfunctions: Ey.. (ki) = —= (ki)™ 2 e
@ decompose P on this basis
@ use the known LL eigenvalue of the BFKL equation on this basis:

w(n,v) = asxo (In], 5 +w)
with xo(n,7) =2¥(1) =¥ (y+ 2) -V (1 -7+ %)
(¥(2) = I (2)/T (), &s = Neas/m)

@ — master formula:

A\ w(m,v)
Cm = (4=30m,0) /dV Crmw kil zs,1) O (k2| 20,2) (i)
. 0

with  Ch (ks z5) = /dqb,; A’k dz f(z)V (K, 2) Em,. (k) cos(ma.)

@ at NLL, same master formula: just change w(m,v) and V
(‘although E, . are not anymore eigenfunctions)
@ one may improve the NLL BFKL kernel by imposing its compatibility with
DGLAP in the (anti)collinear limit (poles in v = 1/2 + iv plane)
Salam; Ciafaloni, Colferai
note: NLL vertices are free of y poles
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Numerical implementation

In practice: two codes have been developed

A Mathematica code, exploratory

D. Colferai, F. Schwennsen, L. Szymanowski, S. W.
JHEP 1012:026 (2010) 1-72 [arXiv:1002.1365 [hep-ph]]

@ jet cone-algorithm with R = 0.5

¢ ¢ ¢ ¢ ¢

(7

MSTW 2008 PDFs (available as Mathematica packages)

pr = pur (in MSTW 2008 PDFs); we take ur = ur = /|ks1| [koz|
two-loop running coupling as(u%)

we use a v grid (with a dense sampling around 0)

we use Cuba integration routines (in practice Vegas): precision 10~2 for
500.000 max points per integration

mapping |k| = |ks| tan(£n/2) for k integrations = [0, co[— [0, 1]
although formally the results should be finite, it requires a special grouping

of the integrand in order to get stable results
= 14 minimal stable basic blocks to be evaluated numerically

rather slow code
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Numerical implementation

A Fortran code, ~ 20 times faster

B. Ducloué, L. Szymanowski, S.W.
JHEP 05 (2013) 096 [arXiv:1207.7012 [hep-ph]]

9

9

¢ © ¢ ¢ ¢

Check of our Mathematica based results

Detailled check of previous mixed studies (NLL Green's function + LL jet

vertices)

Allows for k; integration in a finite range

Stability studies (PDFs, etc...) made easier

Comparison with the recent small R study of D. Yu. Ivanov, A. Papa
Azimuthal distribution

More detailled comparison with fixed order NLO:
there is a hope to distinguish NLL BFKL / NLO fixed order

Problems remain with v integration for low Y
(for Y < —%— ~4). To be fixed!

2as Ne

We restrict ourselves to'Y > 4.
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Integration over |k |

Experimental data is integrated over some range, kjmin < ks = |kyJ|

Growth of the cross section with increasing kjmax :

o (nb)

30 T

25 B b
90% Omax
20 — —

15 - —

10 - —

0 ! ! ! ! ! ! EJmax (GeV)

40 60 80 100 120 140

= need to integrate up to kjmax ~ 60 GeV
A consistency check of stability of |k ;| integration have been made:
@ consider the simplified NLL Green's function + LL jet vertices scenario

@ the integration fkoj ~dky can be performed analytically

@ comparison with integrated results of Sabio Vera, Schwennsen is safe
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Results: symmetric configuration (Jk; min| = [kJ.2 min|

Azimuthal distribution

0<Y <4.7
] 0<Ysy <47

NLL vert. +

NLL Green’s fun.

Full NLL treatment predicts :

@ Less decorrelation for the same Y
@ Slower decorrelation with increasing Y

NLL vert. + NLL resum. Green’s fun.

LL vert. + NLL resum. Green’s fun.

35GeV < |ky1| < 60 GeV
35GeV < |kyz| < 60 GeV
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Results: symmetric configuration (Jk; min| = k72 min| = 35GeV) /s

Azimuthal distribution: stability with respect to so and ur = pr

1
i

ke
ke

al-

1do do.
7z T i
T T T T T T T T T T T T
14 — - LL vertices + NLL Green’s fun. — ] 14~ LL vert. 4+ NLL resum. Green's fun. 7]
b r e > pe/2 e e /2 1
12 1 ¥r fo0 = /502 1T Vo' 2 ]
[ [ \/W"lv 0 f 250 h
1 B 1 B 1 B
s e 4 esf ]
s 4 e ]
e[ e[ g ]
ol ;_’// ]
ol | — S—
1 I I I I I I I I I
2 1 o 1 2 3 ¢ 3 2 1 E
pure LL LL vertices + NLL Green’s fun. LL vert. + NLL resum. Green’s fun.
1do 1do
7de 7
T T T T T T T
- NLL ver NLL Gr fun. —— 7 [ NLLvert. + NLL resum. Green’s fun — ]
L S :4‘,’,,1 I ] 35GeV < [kj1| < 60 GeV
Vi = ] L
Veo = Vs ] L A Ve 3 ¥k 1 35GeV < |kya| < 60GeV
g /\ ]
H4 esf 0<Y; <47
J el 0<Ys <4.7
4 o integrating on the bin:
| i 1 OE= i | 6<Y=Y1+Y2<94
1 2 3¢ 3 2 1
NLL v + NLL Green’s fun. NLL vert. + NLL resum. Green’s fun.

The predicted ¢ distribution within full NLL treatment is stable
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Jet vertex: versus

k,k’ = Euclidian two dimensional vectors

LL jet vertex:

vk

NLL jet vertex:
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Jet vertex: jet algorithms

Jet algorithms

@ a jet algorithm should be IR safe, both for soft and collinear singularities

@ the most common jet algorithm are:

o k¢ algorithms (IR safe but time consuming for multiple jets configurations)

¢ cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis,
Kunszt, Soper)
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Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

@ Should partons (|p1], ¢1,y1) and (p2], @2, y2) combined in a single jet?
|p:| =transverse energy deposit in the calorimeter cell ¢ of parameter
Q= (yi,¢:) in y — ¢ plane

@ define transverse energy of the jet: p; = |p1| + |p2|

@ jet axis:
= IP1ly1 + [P2| y2
Py
Qe
_ |1l ¢1 + |p2| #2
Py = ——
Py

parton; (Q1,|p1])

cone axis (Q¢) Q= (yi, ¢:) in y — ¢ plane
partonz (f22,[p2|)

If distances [ — Qc|® = (i — ye)® + (i — ¢c)? < R* (i =1 and i = 2)

— partons 1 and 2 are in the same cone 2,
Ip1] + |p2|

combined condition: [Q; — Q| < ——————
maz(|p1], |p2]) 67/52



Jet vertex: versus and jet algorithms

LL jet vertex and cone algorithm

k,k’ = Euclidian two dimensional vectors

Vo

5P (kus) =5 (1= 21) k6P (k — k)
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Jet vertex: versus and jet algorithms

NLL jet vertex and cone algorithm

k, k’ = Euclidian two dimensional vectors

S§3,conc) (k/7 k — k/7 zz T) —

’ ’ 2
S (k) © ([7m;;‘;‘_‘;\‘jk‘,‘)Rcone] Ay + A¢2]>

- . ’ 2
+8P(k-K,z2)0 <[Ay2 + A% — [%Rme] )

’ ’ 2
—2))0 <[Ay2 +A¢?] - [%Rme] ) ,
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Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

@ UV sector:
o the NLL impact factor contains UV divergencies 1/e

o they are absorbed by the renormalization of the coupling: s — as(ur)

9 IR sector:
o PDF have IR collinear singularities: pole 1/¢ at LO

o these collinear singularities can be compensated by collinear singularities of
the two jets vertices and the real part of the BFKL kernel

@ the remaining collinear singularities compensate exactly among themselves
o soft singularities of the real and virtual BFKL kernel, and of the jets vertices

compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai,
Vacca)
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BFKL Green’s function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions
9@ NLL BFKLkernel is not conformal invariant
@ LL E, , are not anymore eigenfunction

9 this can be overcome by considering the eigenvalue as an operator with a
part containing =

() v

@ it acts on the impact factor

1.
xa (Inl, 5 +iv

ﬂ'b() 1 ) 0 Cn u(|kJ1|7xJ1)
- 1 o] In ZrevARJL LJ,1)
g (Il g +iv) {2 —i 7w Gt )

1
w(n,v) = asxo (|n| + w) + a2

o1y K1l '2|kJ2|
KR
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LL substraction and sy

@ onesums up Y (asInd/so)" + as Y (asIns/so)™ (8§ =x1228)
@ at LL s¢ is arbitrary

@ natural choice: so = /50,1 50,2 So,; for each of the scattering objects
o possible choice: sg,; = (Jky|+ |ks —k|)? (Bartels, Colferai, Vacca)
9 but depend on k, which is integrated over
@ §is not an external scale (x1,2 are integrated over)

o we prefer 9

x
50,1 = (|kJ1| -+ |kJ1 — k1|)2 — S(l,l = lekQJl
Ji1 3 R 5 xgizg,s
) ) a2, 80 so |kl kel
50,2 = (|kJ2| + |kJ2 — k2|) — 80,2 = 2—kJ2
T2 — Y172 = oY
9 sp — s affects
o the BFKL NLL Green function
o the impact factors:
1. 80,
onir (ks sg ;) = OnLL(ki; so,i) + /ko/ ¢’LL(k§)/CLL(k§7ki)5 In . 2 (1)
0,

@ numerical stabilities (non azimuthal averaging of LL substraction)
improved with the choice so,; = (ki — 2k;)?
(then replaced by s, ; after numerical integration)

9 (1) can be used to test so — A so dependence
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Collinear improvement at NLL

Collinear improved Green's function at NLL

@ one may improve the NLL BFKL kernel for n = 0 by imposing its
compatibility with DGLAP in the collinear limit
Salam; Ciafaloni, Colferai

@ usual (anti)collinear poles in v = 1/2 +4v (resp. 1 — ) are shifted by w/2

@ one practical implementation:
o the new kernel asx(Y) (v, w) with shifted poles replaces

asxo(7,0) +azx1(v,0)

¢ w(0,v) is obtained by solving the implicit equation

UJ(O, V) = dsx(l) (77 w(07 V))
for w(n,v) numerically.

@ there is no need for any jet vertex improvement because of the absence of
~ and 1 —« poles (numerical proof using Cauchy theorem "backward")

@ this can be extended for all n
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Motivation for asymmetric configurations

@ Initial state radiation (unseen) produces divergencies if one touches the
collinear singularity q*> — 0

ks k%
NS
q MRS
/sz

@ they are compensated by virtual corrections

@ this compensation is in practice difficult to implement, or even incomplete,
when for some reason this additional emission is in a "corner” of the phase
space (dip in the differential cross-section)

@ this is the case when k1 +ky2 — 0

@ this calls for a resummation of large remaing logs = Sudakov resummation
k1

I
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Motivation for asymmetric configurations

@ since these resummation have never been investigated in this context, one
should better avoid that region

@ note that for BFKL, due to additional emission between the two jets, one
may expect a less severe problem (at least a smearing in the dip region

k1] ~ [ks2|)
k1

k2

@ this may however not mean that the region k1| ~ |k2| is perfectly
trustable even in a BFKL type of treatment:
in the limit ¢7 = (kj1 + ky2)? < P} = |kJ1/|kJ2], at one-loop,

Qg CF 1112 PJQ_ ZRi
27 c

Sqq—aq =

where R, is the impact parameter, Fourier conjugated to g1 (o =2 7E)
R, ~ 1/q. = suppression of this back-to-back configuration (on top of
BFKL Iarge Y effects) A. H. Mueller, L. Szymanowski, S. W., B.-W. Xiao, F. Yuan

@ we thus think that a measurement in a region where both NLO fixed order

and NLL BFKL are under control would be safer!
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CMS measurement
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Figure 1: Left: Distributions of the azimuthal-angle difference, A, between MN jets in the
rapidity intervals Ay < 3.0 (top row), 3.0 < Ay < 6.0 (centre row), and 6.0 < Ay < 9.4 (bottom
row). Right: Ratios of predictions to the data in the corresponding rapidity intervals. The
data (points) are plotted with experimental statistical (systematic) uncertainties indicated by
the error bars (the shaded band), and compared to predictions from the LL DGLAP-based MC
generators PYTHIA 6, PYTHIA 8, HERWIG++, and SHERPA, and to the LL BEKL-motivated MC
generator HEJ with hadronisation performed with ARIADNE (solid line).
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Figure 2: Left: Average (cos(n(7r — Ag)))(n = 1,2,3) as a function of Ay compared to LL
DGLAP MC generators. In addition, the predictions of the NLO generator POWHEG interfaced
with the LL DGLAP generators PYTHIA 6 and PYTHIA 8 are shown. Right: Comparison of
the data to the MC generator SHERPA with parton matrix elements matched to a LL DGLAP
parton shower, to the LL BFKL inspired generator HEJ with hadronisation by ARIADNE, and to
analytical NLL BFKL calculations at the parton level (4.0 < Ay < 9.4).
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