Exclusive photoproduction of a $\gamma \rho$ pair with a large invariant mass

Samuel Wallon

Université Pierre et Marie Curie and Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

DIFFRACTION 2016

Acireale, 6 September 2016

in collaboration with

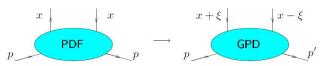
B. Pire (CPhT, Palaiseau), R. Boussarie (LPT Orsay), L. Szymanowski (NCBJ, Warsaw)

What is transversity?

• Transverse spin content of the proton:

$$\begin{array}{ccc} |\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle + |\leftarrow\rangle \\ |\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle - |\leftarrow\rangle \\ \text{spin along } x & \text{helicity states} \end{array}$$

- Observables which are sensitive to helicity flip thus give access to transversity $\Delta_T q(x)$. Poorly known.
- Transversity GPDs are completely unknown experimentally.

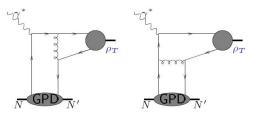


- For massless (anti)particles, chirality = (-)helicity
- Transversity is thus a chiral-odd quantity
- Since (in the massless limit) QCD and QED are chiral-even $(\gamma^{\mu}, \gamma^{\mu} \gamma^5)$, the chiral-odd quantities $(1, \gamma^5, [\gamma^\mu, \gamma^\nu])$ which one wants to measure should appear in pairs

Transversity of the nucleon using hard processes: using a two body final state process?

How to get access to transversity GPDs?

- the dominant DA of ρ_T is of twist 2 and chiral-odd ($[\gamma^{\mu}, \gamma^{\nu}]$ coupling)
- unfortunately $\gamma^* N^{\uparrow} \rightarrow \rho_T N' = 0$
 - This cancellation is true at any order: such a process would require a helicity transfer of 2 from a photon.
 - lowest order diagrammatic argument:



$$\gamma^{\alpha}[\gamma^{\mu}, \gamma^{\nu}]\gamma_{\alpha} \to 0$$

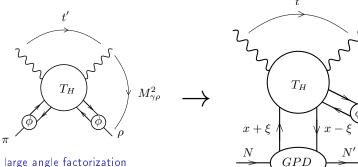
[Diehl, Gousset, Pire], [Collins, Diehl]

Transversity of the nucleon using hard processes: using a two body final state process?

Can one circumvent this vanishing?

- This vanishing only occurs at twist 2
- At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities) can be made safe in the high-energy k_T-factorization approach [Anikin, Ivanov, Pire, Szymanowski, S.W.]
- One can also consider a 3-body final state process [Ivanov, Pire, Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire, Segond, Szymanowski, S. W.]

- We consider the process $\gamma N \to \gamma \rho N'$
- \bullet Collinear factorization of the amplitude for $\gamma+N\to\gamma+\rho+N'$ at large $M_{\gamma\rho}^2$

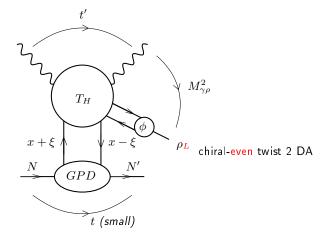


large angle factorization à la Brodsky Lepage

t (small)

Probing chiral-even GPDs using ρ meson + photon production

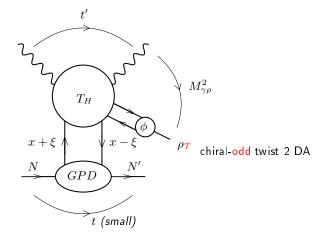
Processes with 3 body final states can give access to chiral-even GPDs



chiral-even twist 2 GPD

Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

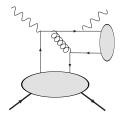


chiral-odd twist 2 GPD

Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

How did we manage to circumvent the no-go theorem for $2 \rightarrow 2$ processes?



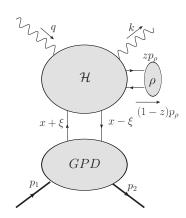
Typical non-zero diagram for a transverse ρ meson

the σ matrices (from DA and GPD sides) do not kill it anymore!

Master formula based on leading twist 2 factorization

$$\mathcal{A} \propto \int_{-1}^{1} dx \int_{0}^{1} dz \; T(x, \xi, z) \times H(x, \xi, t) \Phi_{\rho}(z) + \cdots$$

- Both the DA and the GPD can be either chiral-even or chiral-odd
- At twist 2 the longitudinal ρ DA is chiral-even and the transverse ρ DA is chiral-odd.
- Hence we will need both chiral-even and chiral-odd non-perturbative building blocks and hard parts.



Kinematics to handle GPD in a 3-body final state process

- use a Sudakov basis: light-cone vectors p, n with $2p \cdot n = s$
- assume the following kinematics:

•
$$\Delta_{\perp} \ll p_{\perp}$$

$$\bullet \ M^2, \ m_\rho^2 \ll M_{\gamma\rho}^2$$

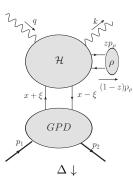
• initial state particle momenta:

$$q^{\mu} = n^{\mu}, \ p_1^{\mu} = (1 + \xi) p^{\mu} + \frac{M^2}{s(1+\xi)} n^{\mu}$$

• final state particle momenta:

$$p_{2}^{\mu} = (1 - \xi) p^{\mu} + \frac{M^{2} + \vec{p}_{t}^{2}}{s(1 - \xi)} n^{\mu} + k^{\mu} = \alpha n^{\mu} + \frac{(\vec{p}_{t} - \vec{\Delta}_{t}/2)^{2}}{\alpha s} p^{\mu} + p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2} ,$$

$$p_{\rho}^{\mu} = \alpha_{\rho} n^{\mu} + \frac{(\vec{p}_{t} + \vec{\Delta}_{t}/2)^{2} + m_{\rho}^{2}}{\alpha_{\rho} s} p^{\mu} - p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2} ,$$



Helicity conserving GPDs at twist 2 :

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H^{q}(x, \xi, t) \gamma^{+} + E^{q}(x, \xi, t) \frac{i\sigma^{\alpha +} \Delta_{\alpha}}{2m} \right]$$

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+} \gamma^{5} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[\tilde{H}^{q}(x, \xi, t) \gamma^{+} \gamma^{5} + \tilde{E}^{q}(x, \xi, t) \frac{\gamma^{5} \Delta^{+}}{2m} \right]$$

- We will consider the simplest case when $\Delta_{\perp}=0$.
- ullet In that case and in the forward limit $\xi o 0$ only the H^q and \tilde{H}^q terms survive.
- Helicity conserving (vector) DA at twist 2 :

$$\langle 0|\bar{u}(0)\gamma^{\mu}u(x)|\rho^{0}(p,s)\rangle = \frac{p^{\mu}}{\sqrt{2}}f_{\rho}\int_{0}^{1}du\ e^{-iup\cdot x}\phi_{\parallel}(u)$$

• Helicity flip GPD at twist 2 :

$$\begin{split} & \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) i \sigma^{+i} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle \\ & = & \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H_{T}^{q}(x, \xi, t) i \sigma^{+i} + \tilde{H}_{T}^{q}(x, \xi, t) \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{M_{N}^{2}} \right. \\ & + & \left. E_{T}^{q}(x, \xi, t) \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{2M_{N}} + \tilde{E}_{T}^{q}(x, \xi, t) \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{M_{N}} \right] u(p_{1}, \lambda_{1}) \end{split}$$

- ullet We will consider the simplest case when $\Delta_{\perp}=0$.
- ullet In that case $\overline{ ext{and}}$ in the forward limit $\xi o 0$ only the H^q_T term survives.
- Transverse ρ DA at twist 2:

$$\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho^{0}(p,s)\rangle = \frac{i}{\sqrt{2}}(\epsilon^{\mu}_{\rho}p^{\nu} - \epsilon^{\nu}_{\rho}p^{\mu})f^{\perp}_{\rho}\int_{0}^{1}du\ e^{-iup\cdot x}\ \phi_{\perp}(u)$$

Models for DAs

Asymptotical DAs

We take the simplistic asymptotic form of the (normalized) DAs:

$$\phi_{\parallel}(z) = 6z(1-z),$$

$$\phi_{\perp}(z) = 6z(1-z).$$

Realistic Parametrization of GPDs

 GPDs can be represented in terms of Double Distributions [Radyushkin] based on the Schwinger representation of a toy model for GPDs which has the structure of a triangle diagram in scalar φ³ theory

$$H^{q}(x,\xi,t=0) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \xi\alpha - x) \, f^{q}(\beta,\alpha)$$

- ansatz for these Double Distributions [Radyushkin]:
 - chiral-even sector

$$f^{q}(\beta, \alpha, t = 0) = \Pi(\beta, \alpha) q(\beta) \Theta(\beta) - \Pi(-\beta, \alpha) \bar{q}(-\beta) \Theta(-\beta),$$

$$\tilde{f}^{q}(\beta, \alpha, t = 0) = \Pi(\beta, \alpha) \Delta q(\beta) \Theta(\beta) + \Pi(-\beta, \alpha) \Delta \bar{q}(-\beta) \Theta(-\beta).$$

• chiral-odd sector:

$$f_T^q(\beta, \alpha, t = 0) = \Pi(\beta, \alpha) \, \delta q(\beta) \Theta(\beta) - \Pi(-\beta, \alpha) \, \delta \bar{q}(-\beta) \, \Theta(-\beta) \,,$$

- $\Pi(\beta, \alpha) = \frac{3}{4} \frac{(1-\beta)^2 \alpha^2}{(1-\beta)^3}$ profile function
- simplistic factorized ansatz for the t-dependence:

$$H^{q}(x,\xi,t) = H^{q}(x,\xi,t=0) \times F_{H}(t)$$

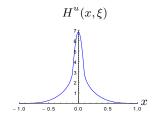
with
$$F_H(t) = \frac{C^2}{(t-C)^2}$$
 a standard dipole form factor $(C=.71 \text{ GeV})$

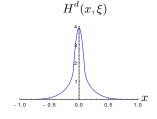
Sets of used PDFs

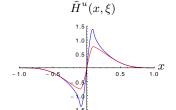
- q(x): unpolarized PDF [GRV-98]
- $\Delta q(x)$ polarized PDF [GRSV-2000]
- $\delta q(x)$: transversity PDF [Anselmino et al.]

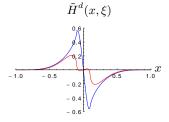
Typical sets of chiral-even GPDs

$$\xi = .1 \leftrightarrow S_{\gamma N} = 20~{\rm GeV}^2$$
 and $M_{\gamma \rho}^2 = 3.5~{\rm GeV}^2$



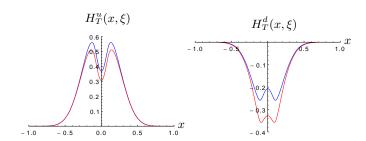






Typical sets of chiral-odd GPDs

$$\xi = .1 \leftrightarrow S_{\gamma N} = 20 \ \mathrm{GeV}^2 \ \mathrm{and} \ M_{\gamma \rho}^2 = 3.5 \ \mathrm{GeV}^2$$

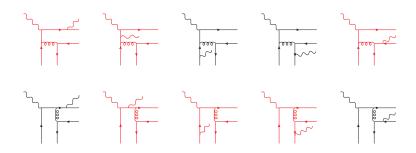


"valence" and "standard": two GRSV Ansätze for $\Delta q(x)$ \Rightarrow two Ansätze for $\delta q(x)$

Conclusion

Computation of the hard part

20 diagrams to compute



The other half can be deduced by $q \leftrightarrow \bar{q}$ (anti)symmetry Red diagrams cancel in the chiral-odd case

Final computation

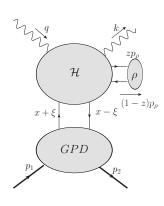
$$\mathcal{A} \propto \int_{-1}^{1} dx \int_{0}^{1} dz \; T(x, \xi, z) \; H(x, \xi, t) \; \Phi_{
ho}(z)$$

- ullet One performs the z integration analytically using an asymptotic DA $\propto z(1-z)$
- One then plugs our GPD models into the formula and performs the integral w.r.t. x numerically.
- Differential cross section:

$$\left.\frac{d\sigma}{dt\,du'\,dM_{\gamma\rho}^2}\right|_{-t=(-t)_{min}} = \frac{|\overline{\mathcal{M}}|^2}{32S_{\gamma N}^2M_{\gamma\rho}^2(2\pi)^3}\,.$$

 $|\overline{\mathcal{M}}|^2$ = averaged amplitude squared

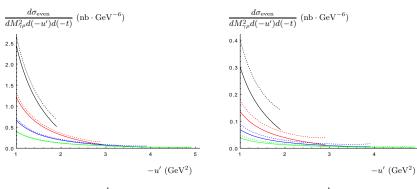
ullet Kinematical parameters: $S^2_{\gamma N}$, $M^2_{\gamma
ho}$ and -u'



Fully differential cross section

Chiral even cross section

at
$$-t = (-t)_{\min}$$



proton

neutron

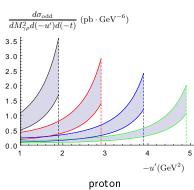
$$S_{\gamma N} = 20 \text{ GeV}^2$$

 $M_{\gamma \rho}^2 = 3, 4, 5, 6 \text{ GeV}^2$

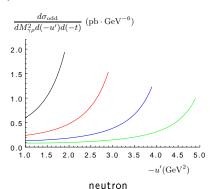
solid: "valence" model dotted: "standard" model Conclusion

Chiral odd cross section

at
$$-t = (-t)_{\min}$$



"valence" and "standard" models, each of them with $\pm 2\sigma$ [S. Melis]



"valence" model only

$$S_{\gamma N} = 20 \text{ GeV}^2$$

 $M_{\gamma \rho}^2 = 3, 4, 5, 6 \text{ GeV}^2$

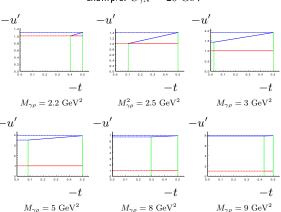
Phase space integration

Evolution of the phase space in (-t, -u') plane

large angle scattering: $M_{\gamma\rho}^2 \sim -u' \sim -t'$

in practice: $-u'>1~{\rm GeV^2}$ and $-t'>1~{\rm GeV^2}$ and $(-t)_{\rm min}\leqslant -t\leqslant .5~{\rm GeV^2}$ this ensures large $M_{\gamma\rho}^2$

example: $S_{\gamma N}=20~{\rm GeV}^2$



Variation with respect to $S_{\gamma N}$

Mapping
$$(S_{\gamma N}, M_{\gamma \rho}) \mapsto (\tilde{S}_{\gamma N}, \tilde{M}_{\gamma \rho})$$

One can save a lot of CPU time:

- $\mathcal{M}(\boldsymbol{\alpha}, \boldsymbol{\xi})$ and $GPDs(\boldsymbol{\xi}, x)$
- In the generalized Bjorken limit:

Given $S_{\gamma N}$ (= $20~{
m GeV}^2$), with its grid in $M_{\gamma \rho}^2$, choose another $\tilde{S}_{\gamma N}$ One can get the corresponding grid in $\tilde{M}_{\gamma \rho}$ by just keeping the same ξ 's:

$$\tilde{M}_{\gamma\rho}^2 = M_{\gamma\rho}^2 \frac{\tilde{S}_{\gamma N} - M^2}{S_{\gamma N} - M^2} \,,$$

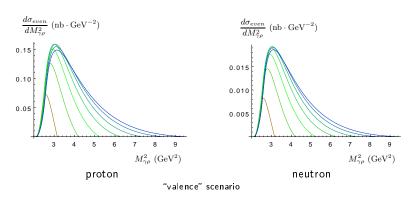
From the grid in -u', the new grid in $-\tilde{u}'$ is given by just keeping the same α 's:

$$-\tilde{u}' = \frac{\tilde{M}_{\gamma\rho}^2}{M_{\gamma\rho}^2} (-u') \,.$$

 \Rightarrow a single set of numerical computations is required (we take $S_{\gamma N}=20~{
m GeV^2})$

Single differential cross section

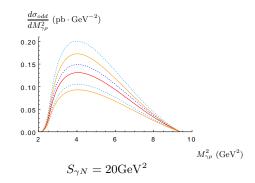
Chiral even cross section



 $S_{\gamma N}$ vary in the set 8, 10, 12, 14, 16, 18, 20 ${
m GeV}^2$ (from left to right)

Single differential cross section

Chiral odd cross section

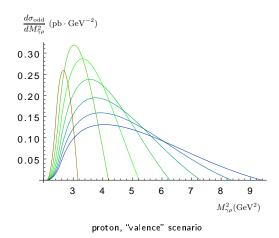


Various ansätze for the PDFs Δq used to build the GPD H_T :

- dotted curves: "standard" scenario
- solid curves: "valence" scenario
- deep-blue and red curves: central values
- light-blue and orange: results with $\pm 2\sigma$.

Single differential cross section

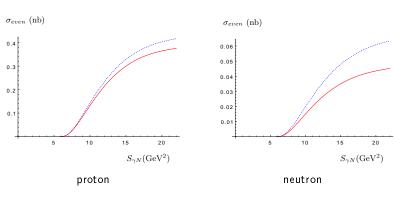
Chiral odd cross section



 $S_{\gamma N}$ vary in the set 8, 10, 12, 14, 16, 18, 20 GeV² (from left to right)

Integrated cross-section

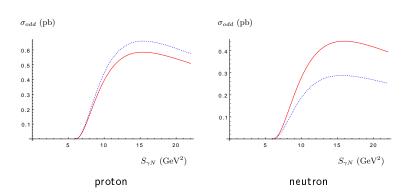
Chiral even cross section



solid red: "valence" scenario dashed blue: "standard" one

Integrated cross-section

Chiral odd cross section



solid red: "valence" scenario dashed blue: "standard" one

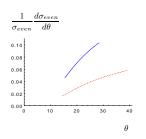
Counting rates for 100 days

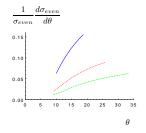
example: JLab Hall B

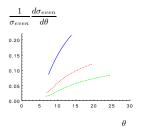
- untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- With an expected luminosity of $\mathcal{L}=100~\mathrm{nb}^{-1}s^{-1},$ for 100 days of run:
 - ullet Chiral even case : $\simeq 3 \; 10^6 \;
 ho_L$.
 - ullet Chiral odd case : $\simeq 7 \; 10^3 \;
 ho_T$

Angular distribution of the produced γ (chiral-even cross section)

after boosting to the lab frame







$$S_{\gamma N} = 10 \text{ GeV}^2$$

$$S_{\gamma N} = 15 \text{ GeV}^2$$

$$S_{\gamma N} = 20 \text{ GeV}^2$$

$$M_{\gamma o}^2 = 3, 4 \text{ GeV}^2$$

$$M_{\gamma\rho}^2 = 3, 4, 5 \text{ GeV}^2$$

$$M_{\gamma\rho}^2=3, {\color{red}4}, 5~{\rm GeV^2}$$

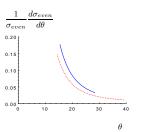
JLab Hall B detector equipped between 5° and 35°

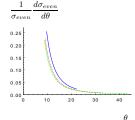
 \Rightarrow this is safe!

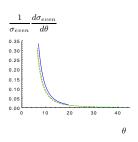
Effects of an experimental angular restriction for the produced γ ?

Angular distribution of the produced γ (chiral-odd cross section)

after boosting to the lab frame







$$S_{\gamma N} = 10 \text{ GeV}^2$$

$$S_{\gamma N} = 15 \text{ GeV}^2$$

$$S_{\gamma N} = 20 \text{ GeV}^2$$

$$M_{\gamma o}^2 = 3, 4 \text{ GeV}^2$$

$$M_{\gamma o}^2 = 3.5, 5, 6.5 \text{ GeV}^2$$

$$M_{\gamma\rho}^2 = 4, 6, 8 \text{ GeV}^2$$

JLab Hall B detector equipped between 5° and 35°

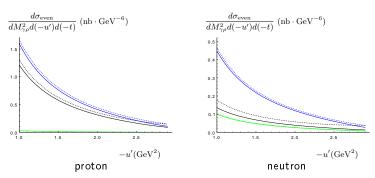
⇒ this is safe!

Conclusion

- \bullet High statistics for the chiral-even component: enough to extract H $(\tilde{H}?)$ and test the universality of GPDs
- In this chiral-even sector: analogy with Timelike Compton Scattering, the $\gamma \rho$ pair playing the role of the γ^* .
- Strong dominance of the chiral-even component w.r.t. the chiral-odd one:
 - In principle the separation ρ_L/ρ_T can be performed by an angular analysis of its decay products, but this could be very challenging. Cuts in θ_{γ} might help
 - Future: study of polarization observables ⇒ sensitive to the interference of these two amplitudes
- \bullet The Bethe Heitler component (outgoing γ emitted from the incoming lepton) is:
 - zero for the chiral-odd case
 - suppressed for the chiral-even case
- Our result can also be applied to electroproduction $(Q^2 \neq 0)$ after adding Bethe-Heitler contributions and interferences.
- Possible measurement at JLAB (Hall B, C, D)
- A similar study could be performed at COMPASS. EIC, LHC in UPC?

Chiral-even cross section

Contribution of u versus d



 $M_{\gamma\rho}^2=4~{\rm GeV}^2$. Both vector and axial GPDs are included.

u+d quarks u quark d quark

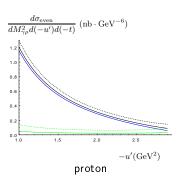
Solid: "valence" model

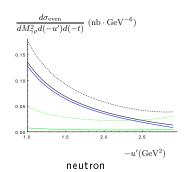
dotted: "standard" model

- u-quark contribution dominates due to the charge effect
- ullet the interference between u and d contributions is important and negative.

Chiral-even cross section

Contribution of vector versus axial amplitudes





 $M_{\gamma\rho}^2=4~{\rm GeV^2}.$ Both u and d quark contributions are included.

vector + axial amplitudes / vector amplitude / axial amplitude solid: "valence" model

- dotted: "standard" model
 dominance of the vector GPD contributions
- no interference between the vector and axial amplitudes