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Introduction
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Introduction

Exclusive processes at high energy in QCD

@ Since a decade, there have been much developpements in hard exclusive
processes.

o form factors, Distribution Amplitudes — Generalized Distribution
Amplitudes

@ DVCS — Generalized Parton Distributions, Transition Distribution
Amplitudes

@ The key tool is the collinear factorization
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Introduction
Extensions from DIS

@ DIS: inclusive process — forward amplitude (¢ = 0)

* e

v QZ QZ Y

Structure Function x=a
= Coefficient Function & Parton Distribution Function
(hard) (soft) e ~
hadron ~ ™ hadron
usual parton distribution
@ DVCS: exclusive process — non forward amplitude (—t < s = W?)
K

LA gl
Q" Pert.

Amplitude z # 2 ,
w
= Coefficient Function ® Generalized Parton Distribution
(hard) (soft)
~ t AN
hadron ~ ™ hadron

Non-pert. object
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Introduction
Extensions from GPD

@ Meson production: ~y replaced by p, 7, ---
. P
Amplitude . 7!
T# e
= GPD ® CF ® Distribution Amplitude
(soft) (hard) (soft)
e N
hadron Non-pert. object hadron
@ Crossed process: s < —1 ¢
*
adron
Q2 -
Amplitude
= Coefficient Function ® Generalized Distribution Amplitude S
(hard) (soft)
N

~ hadron
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Introduction

Extensions from GPD

@ starting from usual DVCS, one allows initial hadron # final hadron

example:
'Y* Y 7* hadron
Pert. Pert. .-
d
t—u
—_—
/\/\
hadron ~ ™ hadron hadron ~ Ph0t0”
GPD TDA

which can be further extended by replacing the outoing ~ by any hadronic state

Amplitude = Transition Distribution Amplitude ® CF ® DA
(soft) (hard) (soft)
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Introduction: phenomenology of exclusive processes within

@ Experimental tests are possible in fixed target experiments
o e*p, upFp: HERA (HERMES), JLab, COMPASS...
as well as in colliders, mainly for medium s

o e*p colliders: HERA (H1, ZEUS)
o ete™ colliders: LEP, Belle, BaBar, BEPC

@ Collinear factorization has been proven only for specific cases:
e.g.: pr production cannot directly be factorized (appearance of end point
singularities)
= improvement needed for a consistent approach of exclusive processes
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QCD in the perturbative Regge limit

@ At the same time, at large s, the interest for phenomenological tests of
hard Pomeron and related resummed approaches has become pretty wide:

o inclusive tests (total cross-section) and semi-inclusive tests (diffraction,
forward jets, ...)

o exclusive tests (meson production)
@ These tests concern all type of collider experiments:
o e*p: HERA: (H1, ZEUS)
¢ pp and pp: TEVATRON (CDF, D0); LHC (CMS, ATLAS, ALICE)
o ete™: (LEP, ILC)

@ These high energy exclusive processes in the perturbative Regge limit may
provide new ideas when dealing with collinear factorization
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Introduction
Exclusive p-production

Our studies attempt to describe exclusive processes involving the production of
p-mesons in diffraction-type experiment. We choose ¢ = t,,;,, for simplicity.
® v (q) +77(a") = pr(p1) + p(p2) process in
ete” — et e pr(p1) + p(p2) with double tagged lepton at ILC
@ v*(q) + P — pr(p1) + P at HERA

H1 p electroproduction (preliminary)

g i R prel. Q?[GeVY

This process was studied by H1 and ZEUS 81031 PRI 20

@ the total cross-section strongly G e 33
decreases with Q> © ozl e 65 |

@ dramatic increase with W? = s.,p —r 119
(transition from soft to hard regime 10 ¢ _/-/-/f! 195 4

governed by QZ) i 37.0
! E — Fitow®

(from X. Janssen (H1), DIS 2008) 10°

W [GeV]
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Introduction
Exclusive p-production

Polarization effects in v* P — p P at HERA

T1al 7 1Tool
F [} Hlpprell,
@ one can experimentally measure all tpoA reee
spin density matrix elements 0758 a
os5fF ® e .
@ at t = tmin One can experimentally distinguish 0.25 fT ‘+
* . . . . 0 1
VL pL d_omlnates (tw!st 2 dominance) it [GeVA]
yr — pr:  sizable (twist 3)
[Tyl 7 1Tool
F ® Hlpprel
1 o A Hlgprel
@ S-channel helicity conservation: 0.75 [&
osF
vz = pL (= Too) CE %
* 0.25 °
Yr — PT, E Ll
0 20
Dominate with respect to all other transitions. Q% [GeV]
Experimentally, v7 — is dominated (from X. Janssen (H1),
P o = P DIS 2008)

by v7—) = pr(~) and vy — pr+) (= T11)
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Introduction
Exclusive p-production

The processes with vector particle such as rho-meson probe deeper into the fine
features of QCD.

It deserves theoretical developpement to describe HERA data in its special
kinematical range:

@ large s4+p = small-x effects expected, within k;-factorization

@ large Q% = hard scale = perturbative approach and collinear factorization
= the p can be described through its chiral even Distribution Amplitudes

pr  twist 2
T twist 3

The main ingredient is the v* — p impact factor

@ For pr, special care is needed: a pure 2-body description would violate
gauge invariance.
@ We show that:

o Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor

@ Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
.

Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

@ In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in ¢ channel)

@ BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

_, reggeon

Born order: BFKL ladder:

effective vertex
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Impact factor for exclusive processes
k1 factorization

y*~* — pp as an example
@ Use Sudakov decomposition k = api + Bp2 + ki (p? =p3 =0, 2p1 - p2 = 5)
o write d'k = £ dadBd’k.

@ t—channel gluons with non-sense polarizations (%, = 2 ps, 420%™ = 2 py)
dominate at large s

I1 (illustration for 2-body case)
. ap < Qquarks = set ar =0 and fdﬁ
7" (q1)
- plk)
B -
k r—k
QN
l2
7" (g2) PO C>< = set B = 0 and fda

ﬂk < ﬁquarks

= plk2)
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Impact factor for exclusive processes
k1 factorization

impact representation k = Eucl. < k) = Mink.

./\/l:is/ o ’k B (@)=r D) (g p _ ) 7 (@)= 0E) (L
us

— k
257 (o~ b)? e

The 77 7(q)g(k1) — pr,r g(k2) impact factor is normalized as

q)ﬁ’**’ﬂ(EQ) — Tk 2_18 ;l_: Disc, SZ* g_>pg(E2)7

with k = (g + k)2 = Bs — Q2 — k2
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Impact factor for exclusive processes
Gauge invariance within subleading twists

Gauge invariance

@ QCD gauge invariance (probes are colorless)
= impact factor should vanish when k — Oorr —k — 0

9 In the following we will restrict ourselve to the case t = tmin, i.e. tor =0

K 2 2
kli%m-ﬁ-kl

T
V)
Il
‘z
w |t
Ed
M
]
V]
+
Ea
s

This kinematics takes into account skewedness effects along po

=> restriction to the transitions 0 - 0 (twist 2)

(+or-) — (+or-) (twist 3)

9 At twist 3 level (for v7- — pr transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
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Collinear factorization
Light-Cone Collinear approach

@ The impact factor can be written as

<I>:/d4l---tr[H(l~~) S(---)]

hard part soft part

@ At the 2-body level:
Suall) = / d*z e~ (p(p)(0) B(2)]0),

@ H and S are related by [ d*l and by the summation over spinor indices
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (1)

@ Use Sudakov decomposition in the form (p =p1, n =2p2/s =>p-n=1)

lu = yp. + lﬁ + ({-p)ny, y=1-n
scaling: 1 1/Q 1/Q?
@ decompose H (k) around the p direction:
OH (1 .
H(l) = H(yp) + Bl() (I=yp)at... with (I—yp)a~Iia
* li=yp

@ In Fourier space, the twist 3 term I turns into a derivative of the soft
term

= one will deal with [ d*z e~ (p(p)[:(0) i 9, ¥(2)|0)
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (2)

@ write
Al — d*1 6(y—1-n) dy

o [d*16(y —1-n) is then absorbed in the soft term:

(Sq«ia 8L§q<?)

/ 160y —1-n) / a2 e (p(p)(0) (1, i 01 )d(2)[0)

Q efiky

e [ @260 - ) (pwIw(0) (1, 950

(b—t-my = enomtn5) =

/% e (p(p)|v(0) (1, i Z)Q;()\n”(»

o [ dy performs the longitudinal momentum factorization
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

2 - Spinorial (and color) factorization

@ Use Fierz decomposition of the Dirac (and color) matrices 1(0) ¢(z) and

w(0)i d. B(=):

@ & has now the simple factorized form:
@ [ do {tr[Hig(op) ) Siy(0) + (01 Hoglo ) T) 0. o)}

T' = y* and v* 4 matrices

Shue) = [ 52 o) [0 0m) T (0)[0)
i) = [ R e pp)in) i 0 H(0))0)

@ choose axial gauge condition for gluons, i.e. n- A =0 = no Wilson line
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Collinear factorization
Light-Cone Collinear approach: (3-body case)

Factorization of 3-body contributions

@ 3-body contributions start at genuine twist 3
= no need for Taylor expansion

@ Momentum factorization goes in the same way as for 2-body case

@ Spinorial (and color) factorization is similar:
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Collinear factorization
Parametrization of vacuum—to-rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators P twise2

kinematical twist 3 (WW)
o genuine twist 3

@ vector correlator genuine 4+ Kinematical twist 3
/s * *T
(PON1O10) Zmy £, [1() (€ - m)pu + 93(9) ;"
@ axial correlator

(o) 9(2)757.1(0)[0) Z my fri0a(y) €pnss X ps s

@ vector correlator with transverse derivative

PO i 0 9(0)]0) Z my fo 0T (4) peT

@ axial correlator with transverse derivative
-

(D)D) 75701 O (0)|0) Z 1m0y £ 05 () P Earps €X' Pa s,

where y (7 = 1 — y) = momentum fraction along p = p; of the quark (antiquark) and

z jgl dyexp[iyp - z], with z = An

= 5 2-body DAs
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Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

@ vector correlator

_ - X
(p(P) | (21)Vug AL (22)¥(0)[0) = m,, 3 B(y1,y2) pues’
@ axial correlator

(p(D) [ (21)57ug AL (22)1(0)[0) 2 my f3 i D(y1, y2) P cargs €4" ps s,

where y1, ¥2, y2 — y1 = quark, antiquark, gluon momentum fraction

1 1
and = Jdyr [dy2 expliyip-2z1 +i(y2 —y1)p- 2z2], with z12 = An
0 0

= 2 3-body DAs
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Collinear factorization
Symmetry properties

From C-conjugation on the previous correlators, one gets:

@ 2-body correlators:

p1y) = pi(l-y)
ws(y) =  w3(l—vy)
waly) = —pa(l—vy)
Pily) = —pi(l-y)
ealy) =  @al—y)
@ 3-body correlators:
B(y1,y2) = —B(l—y2,1—11)
D(y1,y2) = D1 —y2,1—11)
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Collinear factorization
Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)

genuine twist 3

@ Dirac equation Ieads to genuine + kinematical twist 3

—

(D (0)(0)aths(2)) =0 (i Dy=1i 9, +Ay)

@ Apply the Fierz decomposition to the above 2 and 3-body correlators

— (@) P(2)) =

9 = Equation of motion:

BB @ + 3B @)

mw

g1 ps(y) + 51 pa(yr) + 91 (1) + a(yr)

+/dyz [CQ’ B(ys, y2) + G5 D(w, yz)] =0 (1)
@ In WW approximation: genuine twist 3 = 0 i.e. B=D=0
(v —9) i (y) — 5" (y)]

PV () — e (v)]

oh(y) =

N[

o1 (y) = 31y —9) ¥}

24 /a1
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Collinear factorization
n—independence

A minimal set of DAs

@ The non-perturbative correlators cannot be obtained from perturbative
QCD ()
@ one should reduce them to a minimal set before using any model

9 this can be achieved by using an additional condition:
independency of the full amplitude with respect to the gauge fixing vector
n

= we prove that 3 independent Distribution Amplitudes are needed:

o1(y) «— 2 body twist 2 correlator
B(y1, y2) <« 3 body genuine twist 3 vector correlator

D(y1, y2) « 3 body genuine twist 3 axial correlator
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Collinear factorization

n—independence

n—independence in practice

@ pr polarization: e:T =e, —pue*-n keeping n-p=1
@ for the full factorized amplitude:
dA d 17} 0
- H a” h 49 9
A ©5 dn# 0, Where G = ann T d(e* - n)

@ rewrite hard terms in one single form, of 2-body type: use Ward identities
Example: hard 3-body — hard 2-body

tr [Hsp(y1,y2) p° B] Byi, y2) =

(tr [Ha(y1) #] — tr [Ha(y2) P1) B(y1, v2) 5

Y1 — Y2
Y1 Y1 Y2
T2 —y1
1—yo 11— 11—y

@ thus, symbolically,
ds

dnt
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Collinear factorization
n—independence

Constraints from n—independence  twist 2
kinematical twist 3 (WW)

genuine twist 3
genuine + kinematical twist 3

@ vector correlators

d o
a7 (y1) = —p1(y1) + p3(y1)

1
d
&Y [ 22— (B(y1,y2) + By, 1))
Y2 — Y1
0
@ axial correlators

1

d T A/ dy2
— = - | —2— (D, D(ys,
dylw(yl) ealyr) — G yZ_yl( (y1,92) + D(y2,41))
0
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Collinear factorization
A set of independent non-perturbative correlators

. twist 2
Solution kinematical twist 3 (WW)

genuine twist 3
genuine + kinematical twist 3

@ the set of 4 equations (2 EOM + 2 n-independence relations) can be

solved analytically
@ 7 — 3 independent DAs
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Collinear factorization
A set of independent non-perturbative correlators

Solution in WW approximation twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

y 1
wWwW 1 dv dv
P = = — )+ | — )
P3/A (.7/) B / p 4,01(?) > 4,01(1)
0 y
y 1
PF{/‘A”(U) = % -y %@1(7))iy/%(pl(?})
0 Yy
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Collinear factorization
A set of independent non-perturbative correlators

Solutions: genuine twist-3 vector part twist 2
kinematical twist 3 (WW)

genuine twist 3

@ vector 2-body DAs for pr: 3 (y) and ¢1T (y) genuine + kinematical twist 3

o w3(y) = ¥V () + 93" ()

1
gen 1 [du d
o ==y [ [/dy (@ B = D)o w) = [ (& B = D). w2)
Y

u

[ B D)(yw)]
5 Y2 —

Y1

1
1 du d v Ap
5[ [/dyzdu(Cg B4 ¢fD
0 u

Fod
[ B+ D), u)}
5 Y2 —u

3 B+ ¢3'D)(u, y2)

ool () =1 (W) + ¢! ()

A y 1
gen en B(y1,
o) = [aupg o o [an [ a2t

Y

Y2 — Y1
0 0
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Collinear factorization
A set of independent non-perturbative correlators

Solutions: genuine twist-3 axial part twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

@ axial 2-body DAs for pr: pa(y) and ©7 (y)
e paly) =" (y) + %" ()
° i) =2 (W) + %" ()

o the corresponding expressions for %" () and ', 9" (y) are obtained by

the substitutions:

o5 (y) — 05" (y)
¢'B < ¢'D
T gen T gen
07" (y) — 17" (y)
¢'B < ¢'D
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Computation and results
Computation of the hard part

2-body diagrams

} twist 2 (vf — pL)

% 3 twist 3 (vp — pr)

@ without derivative

N

9 practical trick for computing 91 H : use the Ward identity

- = ® where —=——=
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Computation and results
Computation of the hard part

3-body diagrams

@ “abelian” type

IS il alia

@ “non-abelian” type

Gt
Sl
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Computation and results
Recall:

i — pr impact factor

ab
CD“/L—*PL(E2) 269 fp 6 /dym

pure twist 2 scaling

’Q2+k2
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Computation and results
Results:

4 — pr impact factor:

Spin Non-Flip/Flip separation appears

OVTIT (K?) = @177 (K2 T g+ BF 0T (K T,
where

Tn.f, = —(eﬂ, . 6*) and Tf — (e’Y . k')2(€ k‘) + (e,\/ .e )
k 2

+ — —

— — +

+o+

—_ — —

non-flip transitions { flip transitions {
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Computation and results
Results:

A pure twist 3 scaling
L)

2v2Q?% 2N 1 (1—w1) (B2 +Q2y1 (1 —v1))?
(1 —y1)k? (2- Ne/Cp)Q?
2o [dy d YV B (41 y9)— 2 D (91 v: y1 {
/ vr vz [43 (wi,v2) =65 D (n UZ)] E24+Q%2y1 (1 —w1) [k2(y1 —y2 + 1)+ Q%y1 (1 —y2)

2 sab k2 +2Q%y1 (1 —y1)) k> - -
_egmplp {—2 /dyl ( ) [(2y1 - 1)5011 (y1) +¢f\(y1)]

N, Q? v A, 2+ Nc/Cp
T Cr 12 T 0% 91 (32 = y1)] - 2/dy1 dya [Cg B (y1,v2) + €3 D(Ulsy2)} {71 _—
+ y1 Q2 ( (2= Nc/CF) y1 K> _2>
k2 +Q%y1 (1 —y1) \k2(y1 —y2+ 1) +Q%y1 (1 —y2)
G Ne (b1 —v2) A~ w2) Q? ]}
Cr 11—y k2 (1—y1) + Q2% (y2 —y1) (1 — y2)
and
L 2 sab . k2 Q2 . o
1T TIT 2y = 29 mele 4/a = y - —1) ]
£ &) 2v2Q?% 2N, ./ . (k2 + Q2y1 (1 —y1))? [@Awn G =0 <yl>]
2
_4./dy1 dmm [C?D (y1,92) (=y1 +y2 — 1) + ¢ B (v1,v2) (y1 +y2 — 1)]
N { (2 - Ne/CFr)Q? _ Ne Q® ”
E2(y1 —y2+ 1) +Q%y1 (1 —y2) Cr y2k? +Q%y1 (y2 — v1)
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Computation and results
Results:

WW limit
@ WW limit: keep only twist 2 + kinematical twist 3 terms (i.e B = D = 0)
@ The only remaining contributions come from the two-body correlators
@ non-flip transition

T (1?)

=
<1>f —

vy

1
—empfp 590 /dy =91 W) +2y568 Y () + 5 W(y)
2v2Q2 2Nc.0

Q

242 (k% +2

2yy) ((yiy) STWW () 4o IW w (l/>)
y7 (k2 +Q2y(1—y))>

which simplifies, using equation of motion:

/dy[(y DTV () + 29568V (1) + @5V ()] = 0

p 1 2 (1.2 2, =
qf’}_ﬁpT(ﬁ) _empfp 8¢ / yzk (E t2Q yy)
T VEQR 2N ) Ty (B2 + Q2w o)’

[Gy-Del ™YW +e3" Y w)] -

@ flip transition:

L 5ab
YT PT ;12
‘Pn,q.}'. (&%) =~

1
empfp 2k2 Q2 _ TWW TWW
V2Q? 2N, 0/ (k% +Q2yg)? [0 - 20w AT ]
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Computation and results

Discussion:

9 The obtained results are gauge invariant:

PITTPT (0 when kE—0

o this is straightforward in the WW limit

o at the full twist 3 order:

)

the Cr part of the abelian 3-body contribution cancels the 2-body
contribution after using the equation of motion

the N, part of the abelian 3-body contribution cancels the 3-body
non-abelian contribution

thus v — pr impact factor is gauge-invariant only provided the 3-body
contributions have been taken into account
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Computation and results

Discussion:

@ Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation:

o the flip contribution obviously does not have any end-point singularity
because of the k2 which regulates them

o the potential end-point singularity for the non-flip contribution is spurious
since ©% (v), ¢7 (y) vanishes at y = 0,1 as well as B(y1,y2) and D(y1,y2).
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Conclusions
1

@ We have performed a full up to twist 3 computation of the v* — p impact
factor, in the ¢ = tpin limit.

@ Our result respects gauge invariance. This is achieved only after including
2 and 3 body correlators.

@ It is free of end-point singularities
(this should be contrasted with standard collinear treatment, at moderate
s, where kr-factorization is NOT applicable: see Mankiewicz-Piller).

@ Phenomenological applications will be done in the near future.

@ In this talk we relied on the Light-Cone Collinear approach
(Ellis + Furmanski 4+ Petronzio; Efremov + Teryaev; Anikin + Teryaev),
which is non-covariant, but very efficient for practical computations.

@ This Light-Cone Collinear approach is systematic, and can be extended to
any process, including higher twist effects (but does not preclude potential
end-point singularities)
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Conclusions
2

@ Comparison with a fully covariant approach by Ball+Braun et al:
The dictionnary between the two approaches within a full twist 3
treatment is now established:

1% 1-— —
Blyi, ) = - (W, 1=y, 92 —91)
Y2 — Y1
A 1-— —
Diys, ) = (Y1, 1—y2, 42 —4n)
Y2 — Y1
ei(y) = fpmp¢||(y)
es(y) = fomog™(y),
1 dg')
‘PA(?J) = _prmpgTy(y)

9@ We also performed calculations of the same impact factor within the
covariant approach by Ball+Braun et al: calculations proceed in quite
different way : eg. no golT’A—DAs but Wilson line effects are important !!
We got a full agreement with our approach
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