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Introduction

Exclusive processes at high energy in QCD

@ Since a decade, there have been much developpements in hard exclusive
processes.

o form factors, Distribution Amplitudes — Generalized Distribution
Amplitudes

@ DVCS — Generalized Parton Distributions, Transition Distribution
Amplitudes

@ The key tool is the collinear factorization
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Introduction
Extensions from DIS

@ DIS: inclusive process — forward amplitude (¢ = 0)

* e

v QZ QZ Y

Structure Function x=a
= Coefficient Function & Parton Distribution Function
(hard) (soft) e ~
hadron ~ ™ hadron
usual parton distribution
@ DVCS: exclusive process — non forward amplitude (—t < s = W?)
K

LA gl
Q" Pert.

Amplitude z # 2 ,
w
= Coefficient Function ® Generalized Parton Distribution
(hard) (soft)
~ t AN
hadron ~ ™ hadron

Non-pert. object
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Introduction
Extensions from GPD

@ Meson production: ~y replaced by p, 7, ---
. P
Amplitude . 7!
T# e
= GPD ® CF ® Distribution Amplitude
(soft) (hard) (soft)
e N
hadron Non-pert. object hadron
@ Crossed process: s < —1 ¢
*
adron
Q2 -
Amplitude
= Coefficient Function ® Generalized Distribution Amplitude S
(hard) (soft)
N

~ hadron
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Introduction

Extensions from GPD

@ starting from usual DVCS, one allows initial hadron # final hadron

example:
'Y* Y 7* hadron
Pert. Pert. .-
d
t—u
—_—
/\/\
hadron ~ ™ hadron hadron ~ Ph0t0”
GPD TDA

which can be further extended by replacing the outoing ~ by any hadronic state

Amplitude = Transition Distribution Amplitude ® CF ® DA
(soft) (hard) (soft)
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Introduction: phenomenology of exclusive processes within

@ Experimental tests are possible in fixed target experiments
o e*p: HERA (HERMES), JLab, COMPASS...
as well as in colliders, mainly for medium s

o e*p colliders: HERA (H1, ZEUS)
o ete™ colliders: LEP, Belle, BaBar, BEPC

@ Collinear factorization has been proven only for specific cases:
e.g.: pr production cannot directly be factorized (appearance of end point
singularities)
= improvement needed for a consistent approach of exclusive processes
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QCD in the perturbative Regge limit

@ At the same time, at large s, the interest for phenomenological tests of
hard Pomeron and related resummed approaches has become pretty wide:

o inclusive tests (total cross-section) and semi-inclusive tests (diffraction,
forward jets, ...)

o exclusive tests (meson production)
@ These tests concern all type of collider experiments:
o e*p: HERA: (H1, ZEUS)
¢ pp and pp: TEVATRON (CDF, D0); LHC (CMS, ATLAS, ALICE)
o ete™: (LEP, ILC)

@ These high energy exclusive processes in the perturbative Regge limit may
provide new ideas when dealing with collinear factorization
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Introduction
Exclusive p-production

Our studies attempt to describe exclusive processes involving the production of
p-mesons in diffraction-type experiment. We choose ¢ = t,,;,, for simplicity.
® v (q) +77(a") = pr(p1) + p(p2) process in
ete” — et e pr(p1) + p(p2) with double tagged lepton at ILC
@ v*(q) + P — pr(p1) + P at HERA

H1 p electroproduction (preliminary)

g i R prel. Q?[GeVY

This process was studied by H1 and ZEUS 81031 PRI 20

@ the total cross-section strongly G e 33
decreases with Q> © ozl e 65 |

@ dramatic increase with W? = s.,p —r 119
(transition from soft to hard regime 10 ¢ _/-/-/f! 195 4

governed by QZ) i 37.0
! E — Fitow®

(from X. Janssen (H1), DIS 2008) 10°

W [GeV]
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Introduction
Exclusive p-production

Polarization effects in v* P — p P at HERA

T1al 7 1Tool
F [} Hlpprell,
@ one can experimentally measure all tpoA reee
spin density matrix elements 0758 a
os5fF ® e .
@ at t = tmin One can experimentally distinguish 0.25 fT ‘+
* . . . . 0 1
VL pL d_omlnates (tw!st 2 dominance) it [GeVA]
yr — pr:  sizable (twist 3)
[Tyl 7 1Tool
F ® Hlpprel
1 o A Hlgprel
@ S-channel helicity conservation: 0.75 [&
osF
vz = pL (= Too) CE %
* 0.25 °
Yr — PT, E Ll
0 20
Dominate with respect to all other transitions. Q% [GeV]
Experimentally, v7 — is dominated (from X. Janssen (H1),
P o = P DIS 2008)

by v7—) = pr(~) and vy — pr+) (= T11)
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Introduction
Exclusive p-production

The processes with vector particle such as rho-meson probe deeper into the fine
features of QCD.

It deserves theoretical developpement to describe HERA data in its special
kinematical range:

@ large s4+p = small-x effects expected, within k;-factorization

@ large Q% = hard scale = perturbative approach and collinear factorization
= the p can be described through its chiral even Distribution Amplitudes

pr  twist 2
T twist 3

The main ingredient is the v* — p impact factor

@ For pr, special care is needed: a pure 2-body description would violate
gauge invariance.
@ We show that:

o Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor

@ Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

@ In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in ¢ channel)

@ BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

_, reggeon

Born order: BFKL ladder:

effective vertex

12/33



Impact factor for exclusive processes
[ I}

Impact factor for exclusive processes
k1 factorization

y*~* — pp as an example
@ Use Sudakov decomposition k = api + Bp2 + ki (p? =p3 =0, 2p1 - p2 = 5)
o write d'k = £ dadBd’k.

o t—channel gluons with non-sense polarizations (¢%?, = 2 py, 320%™ = 2 py)
dominates at large s

I1 (illustration for 2-body case)
. ap < Qquarks = set ar =0 and fdﬁ
7" (q1)
- plk)
B -
k r—k
QN
l2
7" (g2) PO C>< = set B = 0 and fda

ﬂk < ﬁquarks

= plk2)

13/33



Impact factor for exclusive processes
oe

Impact factor for exclusive processes
k1 factorization

impact representation k = Eucl. < k) = Mink.

./\/l:is/ o ’k B (@)=r D) (g p _ ) 7 (@)= 0E) (L
us

— k
257 (o~ b)? e

The 77 7(q)g(k1) — pr,r g(k2) impact factor is normalized as

q)ﬁ’**’ﬂ(EQ) — Tk 2_18 ;l_: Disc, SZ* g_>pg(E2)7

with k = (g + k)2 = Bs — Q2 — k2
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Impact factor for exclusive processes

Impact factor for exclusive processes
Gauge invariance within subleading twists

Gauge invariance

@ QCD gauge invariance (probes are colorless)
= impact factor should vanish when k — Oorr —k — 0

9 In the following we will restrict ourselve to the case t = tmin, i.e. tor =0

K 2 2
kli%m-ﬁ-kl

T
V)
Il
‘z
w |t
Ed
M
]
V]
+
Ea
s

This kinematics takes into account skewedness effects along po

=> restriction to the transitions 0 - 0 (twist 2)

(+or-) — (+or-) (twist 3)

9 At twist 3 level (for v7- — pr transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators

15 /33



Collinear factorization
©0000

Collinear factorization
Light-Cone Collinear approach

@ The impact factor can be written as

<I>:/d4l---tr[H(l~~) S(---)]

hard part soft part

@ At the 2-body level:
Suall) = / d*z e~ (p(p)(0) B(2)]0),

@ H and S are related by [ d*l and by the summation over spinor indices
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (1)

@ Use Sudakov decomposition in the form (p = p1, n = 2p2/s)

lu = zp, + Ui+ (-p)ng, r=1l-n
scaling: 1 1/Q 1/Q*
@ decompose H (k) around the p direction:
H(l)= H(xzp) + ag((j) (l—zp)a+... with (l—2p)a~~Ils
twist 2 kinematilc:a:riwist 3 and genuine twist 3

@ In Fourier space, the twist 3 term 2 turns into a derivative of the soft
term

= one will deal with [ d*z e =% (p(p)|:(0) i - ()[0)
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization (2)

@ write
d'l — d*1 6(z —1-n) dz

o [d*16(x —1-n) is then absorbed in the soft term:

(chia a1 S'qé)

/ d*16(z —1-n) / a2 e (p(p)(0) (1, i 01 )(2)[0)
d\ e*i/\z

27

/ % e (p)[(0) (1, i 0. )p(An)[0)

[ @269 = ow) (pwlw() (1,1 860

o [ dx performs the longitudinal momentum factorization
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

2 - Spinorial (and color) factorization

@ Use Fierz decomposition of the Dirac (and color) matrices 1(0) ¢(z) and

w(0)i d. B(=):

@ & has now the simple factorized form:
= / dw {tr [Hog(wp) T] iy () + tr [0 Hyg(wp) T) 01S55(2) }

T' = y* and v* 4 matrices

Shue) = [ 52 o) [0 0m) T (0)[0)
i) = [ R e pp)in) i 0 H(0))0)

@ choose axial gauge condition for gluons, i.e. n- A =0 = no Wilson line
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Collinear factorization
Light-Cone Collinear approach: (3-body case)

Factorization of 3-body contributions

@ 3-body contributions start at genuine twist 3
= no need for Taylor expansion

@ Momentum factorization goes in the same way as for 2-body case

@ Spinorial (and color) factorization is similar:
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Collinear factorization
Parametrization of vacuum—to-rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators P twise2

kinematical twist 3 (WW)
o genuine twist 3

@ vector correlator genuine + kinematical twist 3
(PP 1b(O10) Zmy £y [i01(2) (€7 - )y + oa(2) €7

@ axial correlator

<P(p)|1;(z)757u¢( )|O> mp foi pa(x )5;MB5 eA ppns

@ vector correlator with transverse derivative

—

<p(p)|1ﬁ(z)’yui 8l (0 )|0> mp fp 1 (-/)pue:;T

@ axial correlator with transverse derivative
PN

(D) [ (2) 7570 i D (0)|0) Z 1m0y £ 0 () Pu cargs €X” D s,

where z (Z = 1 — ) = momentum fraction along p = p1 of the quark (antiquark) and
z fol drexplizp- 2], with 2 = An
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Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

@ vector correlator
(PO (21)1ug A (22)1(0)[0) Z my 5 Bla1,22) py el
9 axial correlator
(P(D) (1) 1579 A% (22)(0)[0) 2 my f5 i D1, 22) Py carngs € ps s,

where z1, T2, z2 — x1 = quark, antiquark, gluon momentum fraction

1 1
and 2 [dx1 [dxa explizip-z1 +i(z2 —x1)p- 22], with 212 = An
0 0
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Collinear factorization
Symmetry properties

From C-conjugation on the previous correlators, one gets:

@ 2-body correlators:

ey) = wil-y)
es(y) = ws(l-y)
valy) = —pal—y)
eily) = —pi(l-y)
paly) =  @al—y)
@ 3-body correlators:
B(l’1,1’2) = —B(l—l’z,l—l’l)
D(l’1,1’2) = D(l—l‘g,l—l‘l)
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Collinear factorization
Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)

genuine twist 3

@ Dirac equation leads to genuine + kinematical twist 3
(i(P (0)9(0)ats(2)) =0 (i Du=1 du +Au)
@ Apply the Fierz decomposition to the above 2 and 3-body correlators
— (W(2)P(2)) =

9 = Equation of motion:

BB @ + 3B Emb @)

]

[ dmlzm i ga(a) + (o1 - 1) o (o0) + Ao

+2 /dml dzo 21[¢Y Bz, 22) + ¢ D(z1,20)] =0 (V" = £74/1,)
@ In WW approximation: genuine twist 3 = 0
[(z —2) " (2) — o8 (2)]

(@) = (@ — ) oV (@) — oV (@)

S
]
vy
8
N
I
N[
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Computation and results
2-body Diagrams

@ without derivative

N

} twist 2 (v — pL)

3 3 twist 3 (’y;« — PT)

9 practical trick for computing 9, H : use the Ward identity

- = ® where —=——=

N it

At
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Computation and results
3-body Diagrams

@ “abelian” type
o | ™, F @
@ “non-abelian” type

999999999 vvJ
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Computation and results
Recall:

~i — pr impact factor

2
(I)’YL"PL(E2) — —i4CF €q fﬂ /dxgol(w) E

pure twist 2 scaling
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Computation and results
Results:

4 — pr impact factor:

Spin Non-Flip/Flip separation appears

OVTIT (K?) = @177 (K2 T g+ BF 0T (K T,
where

Tn.f, = —(eﬂ, . 6*) and Tf — (e’Y . k')2(€ k‘) + (e,\/ .e )
k 2

+ — —

— — +

+o+

—_ — —

non-flip transitions { flip transitions {
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Computation and results
Results:

—pp pure twist 3 scaling
<1>”Tf T (k2)

2 2 2

m, f, k +2Q% w1 (1—=1))k
- _ ""2 72CF/d131 3 3 ) 5
2v2Q 1711)(& + Q% (1 — 1))

21 (1— =)k (2CF — No)Q?
k2 +Q%z1 (1 —=z1) k2 (21 —22+ 1)+ Q%2 =y (1 — =)

[2e1 = D) o] (@1) + ¢4 (@1)]

+2C/ dzy dao [B (w1, v2) — D (x1, x2)]

Ne Q? 2CF + Ne
T oaEZ Q2 2y (wg = 11)] - 2(/1111 dxy [B (z1,72) + D (w1, z2)] {71 .
N 21 Q? (2CF — Ne) z1 k2 _20p
k2 +Q%zq (1 —x1) \ k2 (z1 — 22+ 1) + Q%21 (1 — x2)
N (z1 —x2) (1 —x2) Q? }}
1—x k2 (1 —21)+ Q2 (z2 —z1) (1 — =2)
and
@n{j;‘*)p'l‘(kQ) = - Moo 4C /d:v &2 Q2 [ng (z1) — (221 — 1) ng (z )}
, - 2vzer | T T e @R (e AT ! L
xq k2
*4C./d11 dw2m [D(z1,22) (—21 + 22 — 1) + B (z1, 22) (z1 + x2 — 1)]
o (20F — No)Q? B Ne Q?
k2 (z1 —22+ 1)+ Q%z1 (1 —z2) x2k? + Q%1 (z2 — 1)
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Computation and results
Results:

WW limit
9 In the WW limit, only the twist 2 and kinematical twist 3 terms are kept.

@ The only remaining contributions come from the two-body correlators

@ non-flip transition

*
Yp—PT

ST =

P

—empf, 5% /1 2o -1 T (@ +20(1—a) " W5 (@) + ¢ (@)
2v2Q2 2Nc.0 z (1 —x)

26? (B2 +2Q%c (1 - o)) (22— 1) o] (@) + % (@)
N e (1l-2)(B2+Q2a (1 - x))?

which simplifies, using equation of motion:

/ da:2az ol "V (2) + (2 - 2) o () + 95 ()] = 0

o PP g2y _ ety 870 b2k (k2 +2Q%2 (1 - )
nop &)= VZQ2 2N, 0/ s (1—2) (k2 +Q%x(1—x))2

[z - Dol @ +eh @) -

@ flip transition:

Ve 2 empfp 80 2k% Q? B T T
o T = R 0/ - aneee CRLISEADEINCIE
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Computation and results

Discussion:

9 The obtained results are gauge invariant:

PITTPT (0 when kE—0

o this is straightforward in the WW limit

o at the full twist 3 order:

)

the Cr part of the abelian 3-body contribution cancels the 2-body
contribution after using the equation of motion

the N, part of the abelian 3-body contribution cancels the 3-body
non-abelian contribution

thus v — pr impact factor is gauge-invariant only provided the 3-body
contributions have been taken into account
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Computation and results

Discussion:

@ Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation:

o the flip contribution obviously does not have any end-point singularity
because of the k2 which regulates them

o the potential end-point singularity for the non-flip contribution is spurious

since ©% (z1), o7 (x1) vanishes at z1 = 0,1 as well as B(z1,z2) and
D(z1,x2).
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Conclusions

Conclusions

@ We have performed a full up to twist 3 computation of the v* — p impact
factor, in the ¢ = tpin limit.

@ Our result respects gauge invariance. This is achieved only after including
2 and 3 body correlators.

@ It is free of end-point singularities (this should be contrasted with standard
collinear treatment, at moderate s, where no kpr-factorization is
applicable: see Mankiewicz-Piller).

@ In this talk we relied on the Light-Cone Collinear approach (Anikin,
Teryaev), which is non-covariant, but very efficient for practical
computations.

9@ We also performed calculations of the same impact factor using a fully
covariant approach (inspired by Braun, Ball).

o We got identical results in the WV approximation and developped the
corresponding dictionnary between the two approaches.

o The general dictionnary between the two approaches within a full twist 3
treatment is under process

@ Phenomenological applications will be done in the near future.
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