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Introduction
°

Extensions from DIS

@ DIS: inclusive process — forward amplitude (¢t = 0) (optical theorem)
(DIS: Deep Inelastic Scattering)
ex: eip — e* X at HERA

Structure Function

= Coefficient Function ® Parton Distribution Function

(hard) (soft)

©

DVCS (TCS): exclusive process — non forward amplitude (—f L s= W2)

(DVCS: Deep Vitual Compton Scattering; TCS: Timelike Compton Scattering) "/* Q )]

Amplitude i
= Coefficient Function ® Generalized Parton Distribution
(hard) (soft) °

Miiller et al. '91 - '94; Radyushkin '96; Ji '97
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Introduction

DVCS and TCS at NLO

One loop contributions to the coefficient function

157 Ej 157 Y Ej Belitsky, Mueller, Niedermeier, Schafer,
/ %%Q\ / Phys.Lett.B474, 2000

Pire, Szymanowski, Wagner

k=q
Phys.Rev.D83, 2011
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Introduction
°

Resummations effects are expected

@ The renormalized quark coefficient functions T is

1Q?|
T = Cg + C{ + CY,;; log —5
HE

1
Cf =eq (m - (z— —x))

_ e2asCr of E—x
Cf—4ﬂ_(;_£+is){log ( o 7lc) —l—] —(z — —x)

@ Usual collinear approach: single-scale analysis w.r.t. Q2

@ Consider the invariants S and U:

S = x;fcf < Q® whenz—¢
M:—wz_ngQ < @Q* whenz — —¢

= two scales problem; threshold singularities to be resummed

analogous to the log(z — ;) resummation for DIS coefficient
functions
a/3a



Introduction
.

Resummation for Coefficient functions: our result

Soft-collinear resummation effects for the coefficient function

@ The resummation easier when using the axial gauge p1 - A =0 (p, = p1)

@ The dominant diagram are ladder-like

Lﬁ”l yrf resummed formula (for DVCS), for z — & :
ol gl

2
< e E—x
T = [ —%2— h D1 > —

e = = (=g { o o (S )
ERRI D? I3 & —

~Z |9+3 —_
i et (-
‘ ‘ 2

+C2, log Q—2) —(x— —z) with D= asCr
LARS 155 27
[T 5 Y| T. Altinoluk, B. Pire, L. Szymanowski, S. W.
v +¢ T - JHEP 1210 (2012) 049 [arXiv:1206.3115]
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One-loop analysis
[ ]

Kinematics, gauge, etc...

@ We expand any momentum in the Sudakov basis p1, ps :
k=ap+08p2+kL

@ po is the light-cone direction of the two incoming and outgoing partons

2 2 Q?
p1=p>=0, 2171'172:5:2—€

@ Momenta of the incoming and outgoing photons:
Gy =p1—28p2, 1= gy

@ The extraction of soft-collinear singularities in the limit z — ££ is
easier in the light-like gauge p1 - A = 0: in this gauge, gluon physical
degrees of freedom are manifest and helicity conservation at each vertex
implies that collinear singularities only arise in ladder-like diagrams

@ K, is the contribution of a n-loop ladder to the CF :
Kn=—4e2 (<iCraigty) In

9 The issue related to the ie prescription is solved by computing the CF in
the unphysical region & > 1. After analytical continuation to the physical
region 0 < ¢ < 1, the physical prescription is then obtained through the
shift £ — £ — ie.

6/3a



One-loop analysis
00000000000

Full one-loop analysis

@ analyzing the one-loop diagrams

@ no approximations!

9 reduce the number of denominators in order to simplify the calculation.

@ aims (we now assume z — +&):
o to understand which diagrams give contribution at order
[as log? (€ — )] /(z — €)
o identify the part of the phase space that is responsible for this contribution

7/34



One-loop analysis
O®000000000

Self energy diagram

L\/\L’lm+(ﬂc—§)m i+ (z—E)p2 S_\j\/_)
p1 — 2§ p2 P1

Reuss?

-
k
(z +&)p2 (z = E)p2

@ numerator for S.E. diagram :

(Num)s 5. = tr{mz b + (2 — a7 [ + (@ — Epr — F7 [ + (o — §)¢2]vm}

kl,plu + kupl L
R T S

@ a simple algebra shows that (Num)gauge = 0 = S.E. diagram is the same
in Feynman gauge and in light-like gauge.

@ In Feynman gauge S.E. diagram gives only single log's!
[B. Pire, L. Szymanowski, J. Wagner, Phys.Rev. D83 (2011) 034009]

@ S.E. diagram doesn't contribute to [log?(¢ — z)]/(z — &) terms! o)



One-loop analysis
00000000000

Right vertex, left vertex and box diagram

L\’L?p. HE-Op p+@—Opath ’,\j;
p1—26p2 j2!

@ Right Vertex:

k+(z—&p2

2
(Num)r.v. = %(J’Jr x—£) ~

k
(& +&)p2 (&= Ep2

1 i 1
@ =€) [k+ (x— O)p2)] " K [k +p1 + (z — E)pa))?

;/pr.ﬂzﬁm Pt (a- O 7
p1—26p2 P

2
k k+ (z +&p2

(Num)r.v. = =8s5-= 7

Ivaf—/dadﬁkoSS%(erl f)g

@ Left Vertex:

k
(z+p2 (&= p2

1 1 i 1
$@ =k + (z+&p2)]* ¥ [k+p1+ (z — )p2)]”

2
IL.v.=—§ dadﬁdggss%
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One-loop analysis
00080000000

Right vertex, left vertex and box diagram

@ Box diagram :
N\ k _ 7
pr— 2% +p1+(z =€) p2 »

k+ (x+&)p2 k+ (x — &) p2

(z+&po k (z — &)p2

The g, part of the box diagram reads

(NUm)pox g, = —2 tr{ b+ (+pa] o[+ (2 — o] AT [+ 1 + (z — 5)762]m}

Noting that p2 can be written as (Ward identity)
n
= %([k—&- (z +§)p2} — [k + (z — E)pz})
one gets
(Num)pox g, = —% [k + (2 + &)p2] Q{ki—(ﬁ+z—£)§}+§ [k + (= — ©)p2] z{ki—(ﬂ+x+£)§+£as}
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One-loop analysis
0000000000

Right vertex, left vertex and box diagram

The gauge part of the numerator for the box diagram reads
(Num)box gauge = — 3“{ [k + @+ pelprpof [ + (w2 — Opo] I [F+pr + (& — 5)]52]%0}
__“{W+l+©ﬁwmﬁw+@—9bhuw+m+@—Omhm}

Using the fact that p3 = 0, then one can write k — k + (z & &)p2 inside the trace and gets

(Num)pox = 8[k+ (2 — 5),;2}2{% [ki — B4z +5)§ +Eas] + £<1 + a)(ﬁ‘+ac+§)}

- 8[k+(w+§)pz}2{%[ki7(6+wf§)§]*B(1+a)(d+zf£)}

= box diagram = right + left vertices:

11/3a



One-loop analysis
00000800000

Right vertex, left vertex and box diagram

Combining right vertex, left vertex and box diagram

Ibox+L.v.+R.V. = [E.LV. + [ER.V.

Effective Left Vertex: Igvv. = +
1)
TeLv. = 7§/dadﬁd2k 8{%[ (ﬂ+x+£)— —&as| — 5(1+a)<ﬂ+z+£) +*ﬁ ((?%g@}
1 1
X 5 5
R [kt (@ +&pa]” [k+p+ (z —&)p2)
Effective Right Vertex: Igrv. = +

Ierv. = —%/dadﬁdzﬁ (—8){%[&2 + B+ 75); f(1+u>(?+ r—§) - ]; %}
1 1 1
k2 [k +p1 + (2 — Opa]” [k + (& — )p2]”
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One-loop analysis
00000080000

Loop integration

Ie.L.v.

o Write d'k = £ dadBd* k. (k2 = —k?)
@ We use Cauchy integration to integrate over «

@ There are two contributions :
o cutting the gluonic line — a4 =

BN
N

»
@

2
@ cutting the fermionic line — af = m

@ distribution of the poles in « sets the integration region of 3:

E—x oo E—x oo
IeLv. = —QWi[/ dﬁ/ dnk Resq, —|—/ dﬁ/ dnk Resaf]
0 0 —t—z 0

@ integration over k is performed by using dimensional regularization:
N=2—¢cyy =2+ €rr

@ the ultraviolet divergence in k integral is taken into account by
renormalization

@ the IR divergent part is absorbed by the DGLAP-ERBL evolution kernel

@ We are only interested in the finite part, which is reminiscent of the IR

soft and collinear divergencies
13/3a4



One-loop analysis
0000000 e000

Loop integration

Ig.1.v.: the gluonic pole contribution

IeLv. g = +

The integration over k gives

L 2mi Lt B8 o1 B+z+¢) B B+z+€) oo
o=t [ | - g e g8 AT

sB(B+x—¢&)]"
=

@ We are only interested in terms that contribute to % terms

@ These corresponds to most singular terms, at the limits of 3 integration.
@ For IgL.v.
B % terms that are singular at 0
° ﬁ terms that are singular at £ — x
@
For #175 type of singularity, the contribution is
2mi 1 2
IpLv.,g=—-4——=log"({ —x
E.LV. g T _¢2 g (& )

Actually, this contributions originates from the box diagram term
14/3a



One-loop analysis
00000000800

Loop integration

Is.1..v.: the fermionic pole contribution

IeLv. = +

The integration over k gives

o [s(ﬁ+z+§2)§(ﬂ+x—£)}€’“

For H Fra—e type of singularity, the contribution is

IeLv. f_4 52! g (26)

this term is less singular than the term we are looking for

15 /34



One-loop analysis
00000000080

Loop integration

IgRr.v.
Igryv. = +
@ gluonic contribution — a4 = % fermionic contribution — oy = s(ﬁfii—g)
E—x S} f—x oo
Ierv. = 727r7ﬁ|:/ dﬂ/ dnk Resa, +/ dﬂ/ dnk Resaf]
0 0 —t-z 0
with
1 8 B+z-¢ (x=9¢ 1 1 1 111
o =4 [ _ u 4 T B
Rew, =t -0 - O iy B g (2T )R

revey =~ o{ lewre—g * smre—e - seal (% 5)

= fermionic contribution vanishes
=no 1/B or 1/(8 + x — &) type of singularity in gluonic contribution

no contribution from I gy
16 /34



One-loop analysis
00000000008

Full one-loop analysis: summary

The only contribution to [log?(¢ — )]/ — & terms come from the box diagram in the case of
cutting the gluonic line around 8+ z — £ &~ 0 in the phase space

The precision of our calculation does not permit us to fix the multiplicative coefficient a of
(& — ) under logarithm, i.e. our result can be equivalently written as

. 271
It ~ 4 o log®la(€ — )]

52'

& The coefficient a is fixed to 5¢ by comparing the log?(& — z) terms in the exact NLO
result.
@ The shift £ — & — ie correctly takes into account the imaginary part.

our final formula reads:

omina 271 1 < — T .
dominant L og? ¢ ie

oneloop - mm lo 2
= First rule:
(i) To extract the dominant behavior of the amplitude, it is sufficient to restrict

ourselves to the contribution of the gluonic pole.

17/3a



One-loop analysis
o0

One-loop in semi-eikonal approximation

Aim : obtain the same result by using eikonal techniques on the left fermionic line of the box diagram

p1— 2§ p2
A

7
v

dominant momentum flow along p» direction

The corresponding integral — I = 5 [ dai dB: dok, (Num)i 2z 2z 7z 7=
1" 1 1

with (Num)1 = tr{ poyulfor + (v — &) pol0lfir + (v +€) polw }d™
and L3 = [k + (@ + O)p2]” , 5% = [kn +p1 + (& — E)pa]” R = [ka + (& — E)p2]”

@ use eikonal coupling on the left quark line and treat the gluon as soft with respect to this quark
= in the quark numerator Li:

(k1 + (z + &p2] — (z+Ep2

@ gluon is soft w.r.t. s-channel fermionic line = a; < 1.

0= 'Yi[kl +751 + (JC - 5)¢2]’Y¢7L d —Qﬁl
18/34



One-loop analysis
oe

One-loop in semi-eikonal approximation

@ The dominant contribution comes from the gluon pole.
. v W o
on mass shell: == elelhy
A

@ The numerator becomes

(Num); = —2(1+§)ZU{ D2vul ka4 (@ =€) p2] b1 b2 Ao} (=elyy)
A

- . k
@ Sudakov decomposition of €f,) in p1 gauge — €(y) =€/ ) — Q%p‘f

@ Summing over the polarizations — 37 €1 (x) - k11 66) = < -k + 2%[}‘1‘)

2z +¢)
B
/

left eikonal coupling right eikonal coupling non eikonal correction

Then (Num); =

@ After Cauchy integration over a1 and considering only the 1/(8 +z — &) type of singularities one gets

omi [ e 1 1
L =— d, dnk
i A ﬂ‘/u B T

@ The integration over k and (3 leads to

Jdominant _
oneloop =

19/3a



Two-loop order
[ Jeo]

Two-loop in semi-eikonal approximation

p1— 2§ p2 h

dominant momentum flow along p2 direction
@ The log® terms we are resumming arise from soft-collinear singularities :
@ Dominance of on-shell gluons contributions

@ Strong ordering in |k;| and 3;

kol > |ky| and @~ &> (O] ~ |z =& > | — &4 61| ~ |B2] and 1> |as| > |oa]

20/34



Two-loop order
oe

Two-loop in semi-eikonal approximation

The integral for the 2-loop case is
111111

I ( ) /dal dph dak, /daz dfz dak,(Num), L2 BYRBER

Using eikonal coupling on the left fermionic line, the numerator is given as
r+¢§) {1_ 281 +x—¢)
B2

2z —5)} —%ﬁ;

—2k% (v + &) { N
B N

(Num)z = —4s
B

gluon 1 gluon 2

and the propagators
Li = a@+8s , S = —kr+ (Bi+ Btz —E)s

L = a(z+8s

Ri=-k+a(h+z-8s ,
RZ = —Ei +afr+ P2tz —E)s,

After integrating over iy and a2 and using the properties of dimensional regularization

2m A St 1 1
dfs 7

T—€ Bitz—EPi+Bata—¢
1

I =
X/Amd ok /‘wd k L
0 M k3 Nilk?&%*(ﬂ1+@2+1*5)5

Integrating over 3; and k; and using the matching condition, the final result is

21/3a



Two-loop order
9000000

Suppressed 2-loop diagrams

Cross diagram

p1—26pa N

(x+ &) p2

@ The dominant contribution is provided by a strong ordering
@ of transverse momenta

@ of collinear momenta
|ko| > |ky| and  z~ &> 5] > |G
@ Within this ordering:

miy? [ [ s L !
S 7I'i d1/ dz/dzk/ dzk —s
0 0 I*fk Mo -k ky — (Bt Bata—E)s
@ no k; dependence! = one less power of log(§ — )

o this cross diagram does not generate maximal collinear singularity!
22/3a



Two-loop order
Oe00000

Suppressed 2-loop diagrams

Ladder diagram with reverse ordering

|k | < |k, | ks | < k|

dominates suppressed

@ Left : natural ordering gives log*(¢ — x). Maximal number of k, for each i

@ Right : reverse ordering gives less powers of log?(¢ —z).  No k,!
= Second rule:

23/3a



Two-loop order
0080000

Suppressed 2-loop diagrams

Diagram with gluon coupled to the s—channel quark

ES+A k3 +A E+A B+ A

k3 k3 k3 K

kY k3

o Left: k3 > k7 : the number of collinear singularities originating from k1 is
not maximal = violates rule (ii)!

@ Right: k; > k, : the virtuality of the upper left fermionic propagator is
k2 + A where A = —(x — £+ 32)s. This lowers the level of singularity,
again leading to a suppressed contribution.

= Third rule :

24/34



Two-loop order
000e000

Suppressed 2-loop diagrams

s

Fermion self-energy diagrams

S

Iy

K

ki+A E+A
K} k3
K j:; Vo 2 K2
K} k3
Ny Ty Y Yy Ty Y
k1 k1
k2> k? k3 < k3

Z} VK2

key point : s-channel fermion virtuality = k? + A, where A = —(z — £ + 51)s..

A does not involve B2 = reduces the power of log(§ — x) after (32 integration

= Fourth ru

le :

25/34



Two-loop order
0000800

Suppressed 2-loop diagrams

Other suppressed diagrams (rule (ii))

M H M

violate the rule:

26/34



Two-loop order
0000080

Suppressed 2-loop diagrams

Other suppressed diagrams (rule (iii))

OO
O

violate the rule:

27/3a



Two-loop order
0000008

Suppressed 2-loop diagrams

Other suppressed diagrams (rule (iv))

violate the rule:

28/34



All-loop analysis
[ ]

Beyond the 2-loop level

Dominance of the ladder-like diagrams
The two-loop analysis showed that only ladder-like diagrams give contribution
4
to a?% terms.
@ Beyond the 2-loop level : recursive argument.

o at 3-loop level the only missing building block is the four-gluon vertex

o four-gluon vertex = contraction of two 3-gluon (subleading) diagrams with
one less propagator.

= this kind of diagrams are also subleading

@ Dress a 2-loop (or n loop) ladder diagram from the right fermionic line :

@ only abelian-like diagrams are allowed

9 can not end on the right fermionic line — (local) violates rule (iv)

@ can not end on the s-channel fermionic line — violates rule (iii)
@ crossing of any gluon line is not permitted — violates rule (i)

= Only ladder-like diagrams are allowed

20/3a



All-loop analysis
[ Jele}

Computation of the n-loop ladder-like diagram

Generalisation of the 1- and 2-loop diagrams

T—&+Pi+-+ 6,
\ kii+--+kin /
p1—28p2 1
T+ E+ B+t B, A T—E+ B+ + B, 9 All gluons are
i+ +kin kit 4 kin
R : B SR R assumed to be on
I = —~ mass shell.
R ) | =&+ Pt A+ Boois
kit + ki | B, kin y kit + ki1
: R @ Strong ordering in
| Br-1, kin-1 I Ei’ Qg and 57«
v
|
[
I @ The dominant
: momentum flows
T+ B, ks | =&+ P, ki along p2 are
Y S 5 5 8 indicated
! - -~
|
(z+&)p2 | B, ki1 \I/ (z—&)p2

30/3a



All-loop analysis
(o] le}

Computation of the n-loop ladder-like diagram

@ Strong ordering is given as :

k| > |kp g > > kgl 1> an] > |an-a] > > Jon|

T~ > B~ e =g > e =8+ B~ B > > [z =&+ B+ fa— o+ Bua] ~ B
@ eikonal coupling on the left

@ coupling on the right goes beyond eikonal

@ Integral for n-loop:

s\" 1
L= (5) [amasak, s [donas v, wmngp g my

@ Numerator:

o2 (£
(Numgs = 45 212 +0

B B2 B2 Bn Bn

{H 2(;.:;9} —2k2 (x4 €) {HM‘ +41‘—£J} 2k (e +8) L 2Bt Pite =)

B

gluon 1 gluon 2 gluon n

@ Propagators:
L =ai(z+&)s, R} =—kiI+oai(fr+a—8)s,

L} = as(z+&)s, R} = k24 ax(Bi+ B2 +a—&)s,

Li=on(@+8&s, Ri=-k +on(Bi+-+pn+z—E)s, 31/3a



All-loop analysis
(eJe] ]

Computation of the n-loop ladder-like diagram

Final step

(271’i)n §—x /5717517'“75n—1 1 1
I, =—4 dBy - - s,
r—¢& Jo o 0 Bﬁl-l-w—f Bri++Bntr—¢

% dnk - dnk. — ..
/0 NS /@2 v 1k2 ki 1k -G+ Btz —§)s

integration over k; and (3; leads to our final result :

(. 27i)" 1 om [E—2 .
pino_ _y @m)" 1 oan €@

" x — & +ie (2n)! o8 { 2¢ e
Resummation :

remember that K, = — ¢ (—i Cr asﬁ)n I

(Z Kn> (x — —x) = % cosh {D log (52;57 — 7€)} —(x — —x)

n=0

where D = ‘“2&
s 32/3a



All-loop analysis
[ ]

Resummed formula

Inclusion of our resummed formula into the NLO coefficient function

The inclusion procedure is not unique and it is natural to propose two choices:

@ modifying only the Born term and the log? part of the C¢ and keeping the
rest of the terms untouched :

(To)ret = (z ZHE { cosh [D log (— - ze)} - {9 +352 log <— - zeﬂ }

2
+ C’coll IOg %) - (I - _ﬁ)

@ the resummation effects are accounted for in a multiplicative way for C¢
and C7 :

e (s o (s s ()

2
+C? ,, log %) —(z — —x)

These resummed formulas differ through logarithmic contributions which
are beyond the precision of our study.
33/3a



Conclusions

Conclusions

@ The resummation of soft-collinear gluon radiation effects allowed us to get
a close all-order formula that modifies significantly the coefficient function
in the specific region = near £¢.

@ Our analysis can be used for the gluon coefficient function [In progress].

@ The measurement of the phenomenological impact of this procedure on
the data analysis needs further analysis with the implementation of
modeled generalized parton distributions [backup].

@ Our analysis could and should be applied to other processes:
TCS [done], exclusive meson production, form factors... [In progress].

@ A formulation of resummation in our exclusive case in terms of
(conformal) moments is not yet available. This would generalize analogous
resummation of inclusive DIS cross-section which were performed in terms
of Mellin moments.

@ Our one-loop treatment involves a non-symmetric treatment for gluon
emission. This whole result can be obtained based on the Low theorem
(known for the Bremsstrahlung in QED) [F. Low 1958 PRD]:
the classical radiation is fully extracted from the elastic amplitude (in our

case the Born order hand-bag diagram) 34/30
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Phenomenological implications

@ We use a Double Distribution based model
S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829 (2007)

@ Blind integral in the whole z—range: amplitude = NLO result + 1%
@ To respect the domain of applicability of our resummation procedure:
o restrict the use of our formula to £ —ay < |z| < {+ ay
o width avy defined through |Dlog(~/(2£))| =1
o theoretical uncertainty evaluated by varying a

@ a more precise treatment is beyond the leading logarithmic approximation

f§§+a’y+f §+‘1"/ C’r(‘g Co — CI)H(x7€7O)

()= ez e
| f—l dx Co + Cl)H(x,§,0)|

Rq(€)
0.12
010 Re[Rq(&)] : black upper curves
oosl’ Im[Rq(€)] : grey lower curves
Z:://\ a =1 (solid)
L e e a = 1/2 (dotted)
000} 01 --- 0.2 .03, 7, 0405 a=2 (dashed)

-0.02 < 35/3a
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