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Introduction
°

Extensions from DIS

@ DIS: inclusive process — forward amplitude (¢t = 0) (optical theorem)
(DIS: Deep Inelastic Scattering)
ex: eip — ef X at HERA

Structure Function

= Coefficient Function ® Parton Distribution Function

(hard) (soft)

©

DVCS (TCS): exclusive process — non forward amplitude (—f L s= W2)

(DVCS: Deep Vitual Compton Scattering; TCS: Timelike Compton Scattering) "/* Q )]

Amplitude i
= Coefficient Function ® Generalized Parton Distribution
(hard) (soft) °

Miiller et al. '91 - '94; Radyushkin '96; Ji '97
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Introduction

DVCS and TCS at NLO

One-loop contributions to the coefficient function

E% f E% P ﬁj Belitsky, Mueller, Niedermeier, Schafer,
Phys.Lett.B474, 2000
y
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(symmetric part of the factorised amplitude)

Pire, Szymanowski, Wagner
Phys.Rev.D83, 2011
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Introduction
°

Resummations effects are expected

@ The renormalized quark coefficient functions T is

|Q?|
T = Cg + C{ + CY,;; log —5
HE

1

_ e2asCr of E—x
Cf—4ﬂ_(;_£+is){log ( o 77/(:) —l—] —(z— —x)

@ Usual collinear approach: single-scale analysis w.r.t. Q2

@ Consider the invariants S and U:

S = x;fcf < Q® whenz ¢
M:—I;égQQ < @Q* whenz — —¢

= two scales problem; threshold singularities to be resummed

analogous to the log(1 — ) resummation for DIS coefficient
functions
a/2s



Introduction
.

Resummation for Coefficient functions: our result

Soft-collinear resummation effects for the coefficient function

@ The resummation is made easier when using the axial gauge p1 - A =10
(py = p1)
@ The dominant diagram are ladder-like

resummed formula (for DVCS), for z — ¢ :

* 2 /
T ! (1) = 67 cosh | D log E-z i€

Y x — & +ie 26

| o 9

RS RRR _D_ [9 + 35 o (f -z ):| }

: o g | —=— — i€

! | 2 z+E 26

: 2

| + Cloy log Q—2 —(x— —2) with D= asCr

EWWW HF o'
v +§ | ’ T 6 T. Altinoluk, B. Pire, L. Szymanowski, S. W.

JHEP 1210 (2012) 49; [arXiv:1206.3115]
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One-loop analysis
[ ]

Kinematics, gauge, etc...

@ We expand any momentum in the Sudakov basis p1, p2 :
k=ap+Bp2+kL

@ po is the light-cone direction of the two incoming and outgoing partons

2 2 Q?
p1=p>=0, 2171'172:5:2—€

@ Momenta of the incoming and outgoing photons:
Gy =p1—28p2, P1= gy

@ The extraction of soft-collinear singularities in the limit z — ££ is
easier in the light-like gauge p1 - A = 0: in this gauge, gluon physical
degrees of freedom are manifest and helicity conservation at each vertex
implies that collinear singularities only arise in ladder-like diagrams

@ K, is the contribution of a n-loop ladder to the CF :
Kn=—4e (<iCraugty) In

9 The issue related to the ie prescription is solved by computing the CF in
the unphysical region & > 1. After analytical continuation to the physical
region 0 < £ < 1, the physical prescription is then obtained through the
shift &€ — &£ — ie.

6/25



One-loop analysis
9000000000

Full one-loop analysis

@ analyzing the one-loop diagrams

@ no approximations!

@ reduce the number of denominators in order to simplify the calculation.

@ aims (we now assume z — +&):
as log? (& —x)
(x =9

o identify the part of the phase space that is responsible for this contribution

o to understand which diagrams give contribution at order

7/25



One-loop analysis
O@00000000

Self energy diagram

L\/\L’lm+(ﬂc—§)m P+ (z—E)p2 S_\j\/_)
p1— 2 p2 P1

Reuss?

-
k
(z +&)p2 (z = E)p2

@ numerator for S.E. diagram :

(Num)s 5. = tr{ [+ @ — ] [+ (2 — s — K" [ + (e §)¢2]vm}

kl,plu + kupl L
o BT

@ a simple algebra shows that (Num)gauge = 0 = S.E. diagram is the same
in Feynman gauge and in light-like gauge.

@ In Feynman gauge S.E. diagram gives only single log's!
[B. Pire, L. Szymanowski, J. Wagner, Phys.Rev. D83 (2011) 034009]

@ S.E. diagram does not contribute to [log?(¢ — )]/ (z — £) terms! .



One-loop analysis
0000000000

Right vertex, left vertex and box diagram

@ Right Vertex:

\ pit+(@—E&p2 pit(x—&)patk p/

p1—28p2

(Num)r.v. = B+z-=¢) ~ Pl

k
(x+&p2 (x = &p2

2
_J_
B

1 1 1 1
s(x —¢§) [k+ (z — E)pg)]z k2 [k+p1+ (z— f)pz)}z

s kK
Irv.=—= [dadBd:k 8s= (B +x —¢&)
2 B
@ Left Vertex:

\ ktpit+(z —&p2 prt(z—§)p2 p/
1

P1—28p2
(Num)r.v. = 85E k(@
B V4
(z+&)p2 ‘ (z = &)p2

2
Iy =—2 [dodB dok 852 ! : s - ‘
v 2/a P dak 8575 (@ =k + (z+p)]> k2 [k+p1 + (x — Op2)]°  o/25



One-loop analysis
0008000000

Right vertex, left vertex and box diagram

@ Box diagram :
\ k _ /
pr— 2% +p1+ (=€) p2 »

k+ (x+&)p2 k+ (x — &) p2

(z+&p2 k (z — &)p2

The g, part of the box diagram reads

(NUm)pox g, = —2 tr{ b+ (+pa] o[+ (2 — o] AT [+ 1 + ( — 5)762]m}

Noting that p2 can be written as (Ward identity)
n
= %([k—&- (z +§)p2} — [k + (z — E)pz})
one gets
(Num)pox g, = —% [k + (2 + &)pe] Q{ki—(ﬁ+z—£)§}+§ [k + (= — ©)p2] z{ki—(ﬂ+x+£)§+£as}
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One-loop analysis
0000@00000

Right vertex, left vertex and box diagram

The gauge part of the numerator for the box diagram reads
(Num)box gauge = — 3“{ [k + @+ pelprpof [ + (2 — Opo] I [F+pr + (& — 5)]52]%0}
__“{w+l+©ﬁwmﬁw+@—9bhuw+m+@—OMMm}

Using the fact that p3 = 0, then one can write k — k + (z & &)p2 inside the trace and gets

(Num)pox = 8[k:+(;r—5)pg]2{%[ki7([3+x+5)%+5as]+%(1+a)(ﬁ+ac+§)}

- 8[k+(x+§)pz]2{%[kif(ﬂ+xf§)§]f§(1+a)<ﬂ+zf£)}

= box diagram = right + left vertices:

11/25



One-loop analysis
0O0000@0000

Right vertex, left vertex and box diagram

Combining right vertex, left vertex and box diagram

Ibox+L.v.+R.V. = [E.LV. + [ER.V.

Effective Left Vertex: Igvv. = +
k(B4
Inrv. = 7§/dadﬁd2k 8{%[ (5+x+£)— —fas| — E(1+a)<ﬁ+z+£) +5 ((?%g@}
N
K2 [k 4 (x4 &)p2)? [k +p1+ (CE —Op)”
Effective Right Vertex: Igrv. = +

Iprv. = —%/dadﬁdzﬁ (—8){% [E2 +(B+z 75)% + %(1 +a)(f+x—§) — %%}
1 1 1
R [k +p1+ (@ — Opa]” [k + (2 — Opa]”

12/25




One-loop analysis
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Loop integration

Ie.L.v.

o Write d'k = £ dadBd* k. (k2 = —k?)
@ We use Cauchy integration to integrate over «

@ There are two contributions :
o cutting the gluonic line — a4 =

BN
N

™

. . ° k2
@ cutting the fermionic line — af = HEE=E)

@ distribution of the poles in « sets the integration region of 3:

E—x oo E—x oo
IeLv. = —QWi[/ dﬁ/ dnk Resq, —|—/ d,@/ dnk Resaf]
0 0 —t—z 0

@ integration over k is performed by using dimensional regularization:
N=2—¢cyy =2+ €rr

@ the ultraviolet divergence in k integral is taken into account by
renormalization

@ the IR divergent part is absorbed by the DGLAP-ERBL evolution kernel

@ We are only interested in the finite part, which is reminiscent of the IR

soft and collinear divergencies
13/25



One-loop analysis
0000000 @00

Loop integration

Ie.L.v.: the gluonic pole contribution  [dominates]

IeLv. g = +

The integration over k gives

L 2mi R & o1 B+az+¢) _ B+az+€) P
v =420 [ | s - oyt G eeg g )

sB(B+x—&) "
=

@ We are only interested in terms that contribute to % terms

@ These corresponds to most singular terms, at the limits of 3 integration.

@ For IgL.v.

B % terms that are singular at 0
1
B+z—¢

@ There are no l} terms in Ig.L.v. g

°

terms that are singular at £ — x

For %@75 type of singularity, the contribution is

2mi 1 2
Isrv.,g= 74#5103;'(5 — )

Actually, this contributions originates from the box diagram term
14 /25



One-loop analysis
0000000080

Loop integration

Ig.L.v.: the fermionic pole contribution  [suppressed]

=

IeL.v., f~4

52‘

[backup]

this term is less singular than the term we are looking for

Igrv. [suppressed]

v T

no contribution from Iz r.v.

[backup]
15/25



One-loop analysis
000000000 ®

Full one-loop analysis: summary

The only contribution to [log?(¢£ — x)]/2 — £ terms comes from the box diagram in the case
of cutting the gluonic line around 8+ 2 — & ~ 0 in the phase space

The precision of our calculation does not permit us to fix the multiplicative coefficient a of
(& — ) under logarithm, i.e. our result can be equivalently written as

ominan 2mi 1
Lndiogs" ~ —4o— 5 log”la(€ — )]

@ The coefficient a is fixed to % by comparing the log®(¢ — ) terms in the exact NLO
result.
9 The shift £ — & — ie correctly takes into account the imaginary part.

our final formula reads:

Jdominant 2me 1 log? -z .
oneloop mg og

16 /25



One-loop analysis
[ Jo}

One-loop in semi-eikonal approximation

Aim : obtain the same result by using eikonal techniques on the left fermionic line of the box diagram

p1— 2§ p2

— d

7
v

dominant momentum flow along p» direction

The corresponding integral — It = 5 [ dai df: dok, (Num)i 2z 5z Az 72
1" 1 1

with (Num)1 = tr{ poyulfor + (v — &) pol0lfir + (v + &) polw }d™
and L% = [k + (@ + O)p2]” 8% = [kn +p1 + (& — E)pa]” R = [ka + (& — E)p2]”

@ use eikonal coupling on the left quark line and treat the gluon as soft with respect to this quark
= in the quark numerator Li:

(k1 + (z + &p2] — (z+Ep2

@ gluon is soft w.r.t. s-channel fermionic line = a1 < 1.

0= 'Yi[kl + 1+ (= Ep2lvor = =21
17 /25



One-loop analysis
oe

One-loop in semi-eikonal approximation

@ The dominant contribution comes from the gluon pole.

on mass shell: ~ d"’ = — 3" el €y
A

@ The numerator becomes

(Num)1 = =2(2+€) D tr{ ol kr+(x—€) 2] b1 b2 foyH—ety)
A

- ; eLok
o Sudakov decomposition of ¢/, in p1 gauge — () = €/ () — 2=t

2
o Summing over the polarizations — 37, €1 () - ki1 €y, = ( — K+ 2%:}1"1‘)

Then (Num), = K

2z +§) [2075
B
/ T N

left eikonal coupling right eikonal coupling non eikonal correction

@ After Cauchy integration over cv; and considering only the 1/(8 + x — &) type of singularities one gets

U A 1 1
Y A e e ey

@ The integration over k and 3 leads to

pdominant _

18 /25



Two-loop order
[ Jeo}

Two-loop in semi-eikonal approximation

p1— 2§ p2 h

dominant momentum flow along p2 direction

& The log? terms we are resumming arise from soft-collinear singularities :
@ Dominance of on-shell gluons contributions

« Strong ordering in |k;| and 3;
|ko| > k| and z~ &> (B~ o =& > |z — &+ 6] ~ |B2] and 1> |as| > |aa]

@ Other diagrams which are not ladder-like or do not respect this strong ordering are suppressed
[backup]
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Two-loop order
oe

Two-loop in semi-eikonal approximation

The integral for the 2-loop case is

2 . .
s p 1111111
L= (5) /dal dp dgﬁl/dag dBs dgEZ(Num)gL—%Rf?STERf%EE

Using eikonal coupling on the left fermionic line, the numerator is given as

(Num)p = —4s —2ki (2 +8) {1 g2

[1 L 2B o= g)}

o3 B2
gluon 1 gluon 2
and the propagators
L = oa(w+8&)s , Ri=-kita(Bi+a—8s , SP=-ky+ (B +p+z—E)s
L} = as(z+8&)s , R§=7k§+a2(ﬂ1 + B+ —§)s,

After integrating over o1 and 2 and using the properties of dimensional regularization

(2mi)* /‘H /‘H*”l 1 1
L = -4 d apy e
2 z—£€ Jo P o Btz —EBi+Prta—¢

o o 1 1
X dnk. / dnk) 5——F———+—
/0 ")y B (Gt Bt ©)s
Integrating over §; and k; and using the matching condition, the final result is

: iluﬂ"‘ 76717[5
+ied! ° 2¢

Igin _
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All-loop analysis
000

Computation of the n-loop ladder-like diagram

Generalisation of the 1- and 2-loop diagrams

T—E+Bi+ A Ba,
\ kin+- - +kin /
p1—2&p2 1
A : All gl
THE+ Pt By T—E+ B+ + Ba, 9 gluons are
i+t kin i+ 4 kin
etk : B SR R assumed to be on
| = —~ mass shell.
THEHB4 A By | T =&+ P+t Pam,
kit + ki1 | Bny kin y kit + ki1
: ERERERRE B @ Strong ordering in
| B, kin I Ei’ @i and ’Bl
v
|
[
I @ The dominant
: momentum flows
T+ B, ks | @ =€+ P, ki along p2 are
Y S 5 5 8 indicated
! - -~
|
(z+&)p2 | B, ki1 \Il (x = &) p2

21/25



All-loop analysis
(o] Je}

Computation of the n-loop ladder-like diagram

@ Strong ordering is given as :

bl > |kp g > > kgl 1> an] > |an-a] > > ||

T~ > B~ o =g > e =6+ B ~ B > > [p =&+ B+ Pa— o+ Bua| ~ |Bul
@ eikonal coupling on the left

@ coupling on the right goes beyond eikonal

@ Integral for n-loop:

s\" 1
L= (5) [amasak, e [dnas vk, wmngp g my

@ Numerator:

o2 (£
(Numgs = 45 21240

20w —€)] —2k3 (x+§) 14 2B +2 -8 2k (@ +6) 14 2Bn1+- btz —9)
5 Ba B2 Bn Bn

[1+

b1

gluon 1 gluon 2 gluon n

@ Propagators:
L3 =ai(z+§)s, R%:*Ef+(¥l(ﬂl+5”7£)‘gv

L} = as(z+&)s, R} = k24 ax(pr+ B ta—&)s,

Li=on(@+8&s, Ri=-k +on(Bi+-+pn+z—E)s, 22/25



All-loop analysis
[ele] ]

Computation of the n-loop ladder-like diagram

Final step

(271’i)n §—x /5717517'“75n—1 1 1
I, =—4 dBy - - s,
r—¢§ Jo o 0 Bﬁl-l-w—f Br+- -+ Bntx—§

% dnk - dnk. — ..
/0 NS /@2 v 1k2 ki 1k =B+ Btz —§)s

integration over k; and f3; leads to our final result :

o))" 1 a[E—z
pin__y@m)" 1 g oan €@
" x — & +ie (2n)! o8 { 2¢ e
Resummation :
remember that K, = —Ze¢ (—i Cr asﬁ)n I

(Z Kn> (r = —x)= % cosh {D log (52;57 - 75)} — (v — —x)

n=0

where D = ‘“2&
” 23/25



All-loop analysis
[ ]

Resummed formula

Inclusion of our resummed formula into the NLO coefficient function

The inclusion procedure is not unique and it is natural to propose two choices:

@ modifying only the Born term and the log? part of the C¢ and keeping the
rest of the terms untouched :

(Toyret = (z ZHE { cosh [D log (— - ze)} - {9 +352 log (— - ze>:| }

2
+ C’coll log %) - (I - _ﬁ)

@ the resummation effects are accounted for in a multiplicative way for C¢
and C7 :

e (s o (s s (1)

2
+C? , log %) —(z — —x)

These resummed formulas differ through logarithmic contributions which
are beyond the precision of our study.
24 /25



Conclusions

Conclusions

@ The resummation of soft-collinear gluon radiation effects allowed us to get
a close all-order formula that modifies significantly the coefficient function
in the specific region = near £¢.

@ Our analysis can be used for the gluon coefficient function [In progress].

@ The measurement of the phenomenological impact of this procedure on
the data analysis needs further analysis with the implementation of
modeled generalized parton distributions [backup].

@ Our analysis could and should be applied to other processes:
TCS [done], exclusive meson production, form factors... [In progress].

@ A formulation of resummation in our exclusive case in terms of
(conformal) moments is not yet available. This would generalize analogous
resummation of inclusive DIS cross-section which were performed in terms
of Mellin moments.

@ Our one-loop treatment involves a non-symmetric treatment for gluon
emission. This whole result can presumably be obtained based on the Low
theorem (known for the Bremsstrahlung in QED) [F. Low 1958 PRD]:
the classical radiation should be fully extracted from the elastic amplitude

(in our case the Born order hand-bag diagram) [In progress] 2525



Loop integration

Is.1..v.: the fermionic pole contribution

IeLv. = +

The integration over k gives

o [s(ﬁ+z+§2)§(ﬁ+x—£)}€m

@ There are no

1
FroTe type of terms!

For H Fra—e type of singularity, the contribution is

IeLv. f_4 52' g (26)

this term is less singular than the term we are looking for

26/25



Loop integration

IgRr.v.
Igryv. = +
@ gluonic contribution — a4 = g fermionic contribution — oy = s(ﬁfii—f)
E—x oo E—a )
Ierv. = 727r71|:/ dﬁ/ dnk Resa, +/ dﬁ/ dnk Resaf]
0 0 —t-z 0
with
1 8 B+z-¢& (x=9¢ 1 1 1 111
Say =4 21— - 4 I
e e | gy 2 g |2 B

revey =~ { oo s - sea) (x4 5) )

= fermionic contribution vanishes
=no 1/B or 1/(B + x — &) type of singularity in gluonic contribution

no contribution from I gy
27 /25
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Suppressed 2-loop diagrams

Cross diagram

p1—26pa N

(x+ &) p2

@ The dominant contribution is provided by a strong ordering
@ of transverse momenta

@ of collinear momenta

|ko| > |ky| and  z ~ &> |B1] > |Be]
@ Within this ordering:

g [ETT rEme=h 1 1 1
s(2m) /Odﬁl/o ‘wz/ dz’“/ o, rfék -8 b by’ — (i + fa+ o —O)s

@ no k; dependence! = one less power of log(§ — x)

o this cross diagram does not generate maximal collinear singularity!
28/25
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Suppressed 2-loop diagrams

Ladder diagram with reverse ordering

|k | < |k, | ks | < k|

dominates suppressed

@ Left : natural ordering gives log*(¢ — x). Maximal number of k, for each i

@ Right : reverse ordering gives less powers of log?(¢ —z).  No k,!
= Second rule:

20/25
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Suppressed 2-loop diagrams

Diagram with gluon coupled to the s—channel quark

ES+A k3 +A E+A B+ A

k3 k3 k3 K

kY k3

o Left: k3 > k7 : the number of collinear singularities originating from k1 is
not maximal = violates rule (ii)!

@ Right: k; > k, : the virtuality of the upper left fermionic propagator is
k2 + A where A = —(x — £+ B2)s. This lowers the level of singularity,
again leading to a suppressed contribution.

= Third rule :

30/25
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Suppressed 2-loop diagrams

s

Fermion self-energy diagrams

S

Iy

K

ki +A E+A
k3 Kk}
gi}wz 2 %
k3 k3
sy sy Y RERERERRY
k1 k1
k3 > k7 kS <K

Z}m

key point : s-channel fermion virtuality = k? + A, where A = —(z — £ + 51)s..

A does not involve B2 = reduces the power of log(§ — x) after 32 integration

= Fourth ru

le :

31/25



backup
0000800

Suppressed 2-loop diagrams

Other suppressed diagrams (rule (ii))

M H M

violate the rule:

32/25
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Suppressed 2-loop diagrams

Other suppressed diagrams (rule (iii))

OO
O

violate the rule:

33/25
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Suppressed 2-loop diagrams

Other suppressed diagrams (rule (iv))

violate the rule:

34/25
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Beyond the 2-loop level

Dominance of the ladder-like diagrams
The two-loop analysis showed that only ladder-like diagrams give contribution
4
to a?% terms.
@ Beyond the 2-loop level : recursive argument.

o at 3-loop level the only missing building block is the four-gluon vertex

o four-gluon vertex = contraction of two 3-gluon (subleading) diagrams with
one less propagator.

= this kind of diagrams are also subleading

@ Dress a 2-loop (or n loop) ladder diagram from the right fermionic line :

@ only abelian-like diagrams are allowed

¢ can not end on the right fermionic line —

9 can not end on the s-channel fermionic line —
@ crossing of any gluon line is not permitted —

= Only ladder-like diagrams are allowed

35/25
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Phenomenological implications

@ We use a Double Distribution based model
S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829 (2007)

@ Blind integral in the whole z—range: amplitude = NLO result + 1%
@ To respect the domain of applicability of our resummation procedure:
o restrict the use of our formula to £ —ay < |z| < {+ ay
o width avy defined through |Dlog(~/(2£))| =1
o theoretical uncertainty evaluated by varying a

@ a more precise treatment is beyond the leading logarithmic approximation

f§§+a’y+f §+a’y z(C* — Cy — C1)H (=, &,0)

()= ez e
| f—l dx Co + Cl)H(x,§,0)|

Rq(€)
0.12
010 Re[Rq(&)] : black upper curves
oosl’ Im[Rq(€)] : grey lower curves
Zz//\ a =1 (solid)
L e e a = 1/2 (dotted)
000} 01 --- 02 . ... 03 7, 0405 a=2 (dashed)
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