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Introduction
©00

Motivations

@ One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s > —t

@ Based on theoretical grounds, one should identify and test suitable
observables in order to test this peculiar dynamics

t
ha (M7) My (M)
«— vacuum quantum
S —
number
ha (M3) hy (M)

hard scales: M7, M3 > Agop or Mi?, M5® > Adep or t > Adep
where the t—channel exchanged state is the so-called hard Pomeron
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How to test QCD in the perturbative Regge limit?

What kind of observable?

@ perturbation theory should be applicable:
selecting external or internal probes with transverse sizes < 1/Agcp
(hard v*, heavy meson (J/¥, T), energetic forward jets) or by choosing

large t in order to provide the hard scale.
p—0

@ governed by the "soft" perturbative dynamics of QCD \Frrfg(

m =0
and not by its collinear dynamics ‘rr‘r‘&i/e =0
m=0

— select semi-hard processes with s > p%; > AQQCD where p%; are
typical transverse scale, all of the same order.
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How to test QCD in the perturbative Regge limit?

Some examples of processes

@ inclusive: DIS (HERA), diffractive DIS, total v*~v™* cross-section (LEP,
ILC)

@ semi-inclusive: forward jet and 7° production in DIS, Mueller-Navelet
double jets, diffractive double jets, high pr central jet, in hadron-hadron
colliders (Tevatron, LHC)

9 exclusive: exclusive meson production in DIS, double diffractive meson
production at e"e” colliders (ILC), ultraperipheral events at LHC
(Pomeron, Odderon)
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The specific case of QCD at large s

QCD in the perturbative Regge limit

@ Small values of aus (perturbation theory applies due to hard scales) can be
compensated by large In s enhancements. = resummation of
> n.(as Ins)™ series (Balitski, Fadin, Kuraev, Lipatov)

T T T (E)

~ ~ s(aslns) ~ 5 (s Ins)?

@ this results in the effective BFKL ladder

reggeon = "dressed gluon"
effective vertex

hq hg—anything ap(0)—1

1
= Oyt : - :glmANS

with ap(0) —1=Cas (C >0) Leading Log Pomeron
Balitsky, Fadin, Kuraev, Lipatov
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Opening the boxes: Impact representation

@ Sudakov decomposition: k; = a;p1 + Bip2 + kii (3 =p3 =0, 2p1 - p2 = s)
@ write d'ki = £ daidBi d’kyi (&= Eud. < ki = Mink.)

up/down

@ t—channel gluons have non-sense polarizations at large s: €47/ =2py

*

=setan =0and [dB = & =7 (k,,r —k;)
impact factor

. 2 2K
_ 18 d Eéup(k./ E—E)/ d E q)dn’w'n,(_k/ _E_‘—&l)

2m)2) K E? -
S+ico
x / do (516 (kK ,r)
271\ So AR~
§—ioco

«—— multi-Regge kinematics

= set B, =0and [da, = <I>“'*AA"*(7EH7 -r+k,)
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higher order corrections

@ Higher order corrections to BFKL kernel are known at NLL order (Lipatov
Fadin; Camici, Ciafaloni), now for arbitrary impact parameter
as Yy, (as Ins)" resummation

@ impact factors are known in some cases at NLL
¢ v* — 4* at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao)
o forward jet production (Bartels, Colferai, Vacca)

¢ v* — pin forward limit (lvanov, Kotsky, Papa)



A full NLLx example: Mueller-Navelet jets

jets: Basics

Mueller Navelet jets

@ Consider two jets (hadron paquet within a narrow cone) separated by a
large rapidity, i.e. each of them almost fly in the direction of the hadron
“close” to it, and with very similar transverse momenta

@ in a pure LO collinear treatment, these two jets should be emitted back to
back at leading order: A¢p — 1w =0 (Ap = ¢1 — P2 = relative azimutal
angle) and k1 1=Fk.12. There is no phase space for (untagged) emission
between them

p(m)\L

large - rapidity
| jeta (kiz2, ¢2)

Beam axis

(; . zero rapidity
”—

large + rapidity




A full NLLx example: Mueller-Navelet jets

fails

jets at

Mueller Navelet jets at LL BFKL

@ in LL BFKL (~ > (asIns)™),
emission between these jets
— strong decorrelation
between the relative azimutal
angle jets, incompatible
with pp Tevatron collider data

@ a collinear treatment
at next-to-leading order
(NLO) can describe the data

9 important issue:
non-conservation
of energy-momentum
along the BFKL ladder.
A BFKL-based
Monte Carlo combined
with e-m conservation
improves dramatically
the situation (Orr and Stirling)

jety
collinear
parton
(PDF)
rapidity gap
y LL BFKL
rapidity gap .
& Green function
collinear
parton
(PDF)
jety

Multi-Regge kinematics
(LL BFKL)



A full NLLx example: Mueller-Navelet jets

[ ]
Studies at LHC: jets
Mueller Navelet jets at NLL BFKL

@ up to now, the
subseries s Y (asIns)”
NLL was included
only in the exchanged
Pomeron state, and
not inside the jet vertices
Sabio Vera, Schwennsen
Marquet, Royon

collinear
parton
(PDF)

jet; NLL jet vertex

rapidity gap

NLL BFKL

rapidity gap .
& Green function

. collinear
@ the common belief parton

was that these corrections (PDF) jety NLL jet vertex
should not be important

Quasi Multi-Regge kinematics (here for NLL
BFKL)



A full NLLx example: Mueller-Navelet jets
®00000

Jet vertex: versus

k,k’ = Euclidian two dimensional vectors

LL jet vertex:

NLL jet vertex:




A full NLLx example: Mueller-Navelet jets
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Jet vertex: jet algorithms

Jet algorithms

9 a jet algorithm should be IR safe, both for soft and collinear singularities

@ the most common jet algorithm are:

o k¢ algorithms (IR safe but time consuming for multiple jets configurations)

@ cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis,
Kunszt, Soper)



A full NLLx example: Mueller-Navelet jets
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Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

@ Should partons (|p1], ¢1,y1) and (p2], @2, y2) combined in a single jet?
|p:i| =transverse energy deposit in the calorimeter cell ¢ of parameter
Q= (yi, ¢i) iny — ¢ plane

@ define transverse energy of the jet: p; = |p1| + |p2|

@ jet axis:
. pJ
y=—"
[P1ly1 + [p2| y2
Qe
pJ
¥

" Tpilén + P2l o2
parton: (Q1,|p1])
cone axis (Qc) Q= (yi, ¢i) in y — ¢ plane
partona (Q2,|p2|)
If distances [ — Qc|® = (yi —ye)® + (¢ — ¢e)® < R? (i=1and i = 2)

= partons 1 and 2 are in the same cone €2,
[p1| + [p2]

combined condition: [ — Q| < —————F——R
maz(|p1l, [pz|



A full NLLx example: Mueller-Navelet jets
000e00

Jet vertex: versus and jet algorithms

LL jet vertex and cone algorithm

k, k’ = Euclidian two dimensional vectors

b

5P (kusa) =6 (1= 1) k6 (k — k)



A full NLLx example: Mueller-Navelet jets
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Jet vertex: versus and jet algorithms

NLL jet vertex and cone algorithm

k, k’ = Euclidian two dimensional vectors

S§3,conc) (k/7 k — k/7 zz; T) —

@k r k—k'|+|K’ 2
S.I (k7 :L) S} <[WRCOD6:I - I:Ay2 + Aqﬁﬂ)

/ 2
+ 8P (k—K,z22) 0 <[Ay2 +A¢%] — [%ane] )

0,z k,z(1-—z2)

2 ’ kK |+]K/| 2
+ 8P (K, z(1-2) © ([Ay2 +A¢?] — [m&me] ) ,

0,z k,z(1 — z)



A full NLLx example: Mueller-Navelet jets
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Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

9@ UV sector:
o the NLL impact factor contains UV divergencies 1/¢

o they are absorbed by the renormalization of the coupling: ag — as(ur)

9 IR sector:
o PDF have IR collinear singularities: pole 1/€ at LO

o these collinear singularities can be compensated by collinear singularities of
the two jets vertices and the real part of the BFKL kernel

@ the remaining collinear singularities compensate exactly among themselves

o soft singularities of the real and virtual BFKL kernel, and of the jets vertices
compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai,
Vacca)



Practical implementation of the computation
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Master formulas

kr-factorized differential cross-section

do —/dz/) do /ko 2k
dlkJ,1|dlks2|dys1 dyse2 s1d¢s2 1 d2k,

LS ARCIRTE AR X (I)(kJ,I7CCJ,l7 7k1)

X G(kl,k2,§)

@
1 ko, ¢

Kz, duz Ty2
gt X ®(kj2,x2, ko)

with ¢(k.l,27-77.l,27k2) = fdl‘Q f(IQ)V(kQ,IQ) f = PDF xry = |kJ‘eyJ
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Master formulas

Angular coefficients

Cn = /d¢J,1 de,2 cos (m(ps1 — ¢ps2 —m))
X /d2k1 d2k2 @(k]yl, TJ,1, —kl) G(kl, k2, §) @(k‘]g, TJ,2, k2).

@ m =0 = cross-section

do
dlks,1|dlks2| dys,1 dys,e

= Co

@ m > 0 = azimutal decorrelation

Cm
Co

(cos(mep)) = (cos (m(ps1 — ps2 —m))) =



Practical implementation of the computation
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Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

1
@ LL BFKL eigenfunctions: En (ki) = —5 (ki)™ % e

@ decompose ® on this basis

@ use the known LL eigenvalue of the BFKL equation on this basis:

w(n,v) = asxo (Inl, 3 + )
with xo(n,7) =2¥(1) =¥ (y+3) — ¥ (1—v+5)
(¥(x) = I"(2)/T(x), &s = Neas /7)

@ — master formula:

A\ w(m,v)
C'm - (4 - 357n,0) /dV C"m,u(lk‘],] ‘7 fE,],l)CV:;y,,V(‘kJ,‘ZL $J,2) (i)

S0
with

Cmw(ksl|,zs) = /dm &’k dz f(2)V (K, ) B, (k) cos(me.)

9 at NLL, same master formula: just change w(m,v) and V



mplementation of the computation

BFKL Green’s function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions

@ NLL BFKLkernel is not conformal invariant
@ LL E, , are not anymore eigenfunction

9 this can be overcome by considering the eigenvalue as an operator with a
part containing aﬁ

@ it acts on the impact factor

inl, £ +iv
' 2

7o 1 0, Cnu(ksal,zs1)

_ 70 - _92] — i L g 2RI L)
2N, °<'"' *){ MR G el zr) ] |

o1y K1l - kel

I

1
w(n,v) = a@sxo <|n| + w) +a2|xa
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LL substraction and sy

@ onesums up Y (asInd/so)" + as Y (asIns/so)™ (8§ ==x1228)
@ at LL sq is arbitrary

@ natural choice: so = /50,1 50,2 So,; for each of the scattering objects
o possible choice: so; = (|ks| + |ks — k|)? (Bartels, Colferai, Vacca)
9 but depend on k, which is integrated over
9 §is not an external scale (z1,2 are integrated over)

o we prefer 5

xr
50,1 = (|kJ’1 + |kJ’1 — k1|)2 — 56.’1 = 12_11(‘2]’1
Ji1 § § Tj1TJjy S
2o, 2 TP
22 50 so kgallkszel
80’2 = (|kJ’2 + |kJ’2 — k2|)2 — 86.’2 = 2—ka2
72 — eUI17VI2 = oY
@ sp — s affects
o the BFKL NLL Green function
o the impact factors:
1 sé).v
onir (ks sp;) = OnLL(ki; s0,i) + /ko' q)LL(k;)}CLL(k§7ki)§ In S—Z (1)
S0,

@ numerical stabilities (non azimuthal averaging of LL substraction)
improved with the choice so,; = (ki — 2kJ;)?
@ (1) can be used to test so — A so dependence



Practical implementation of the computation
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Collinear improvement at NLL

Collinear improved Green's function at NLL

@ one may improve the NLL BFKLkernel for n = 0 by imposing its
compatibility with DGLAP in the collinear limit
Salam; Ciafaloni, Colferai

@ usual (anti)collinear poles in v = 1/2 +4v (resp. 1 — ) are shifted by w/2
@ one practical implementation:
o the new kernel &Sx(l)('y,w) with shifted poles replaces
&SXO('Yv 0) + 07§X1 (’Yv 0)
@ w(0,v) is obtained by solving the implicit equation
w(07 V) = dSX(l) (77 w(07 V))
for w(n,v) numerically.

@ there is no need for any jet vertex improvement because of the absence of
~ and 1 — v poles (numerical proof using Cauchy theorem "backward")



mplementation of the computation
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Numerical implementation

o
o
o
]
]
]

(7

In practice

MSTW 2008 PDFs (available as Mathematica packages)
ur = pr (this is imposed by the MSTW 2008 PDFs)
two-loop running coupling as(u%)

We use a v grid (with a dense sampling around 0)

all numerical calculations are done in Mathematica

we use Cuba integration routines (in practice Vegas): precision 10~2 for
500.000 max points per integration

mapping |k| = |ks| tan(£n/2) for k integrations = [0, co[— [0, 1]
although formally the results should be finite, it requires a special grouping
of the integrand in order to get stable results

= 14 minimal stable basic blocks to be evaluated numerically



Results: symetric configuration (|kj1| = |kj2| = 35GeV)

Cross-section

b pure LL
Co [GeVQ} =0 LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green’s function
NLL vertices + improved collinear NLL Green's function

0.1

0.01

. . . LY
6 7 8 9 10

Differential cross section in dependence on Y for |k 1| = |kJz2| = 35GeV.
error bands=errors due to the Monte Carlo integration (2% to 5%)

The effect of NLL vertex correction is very sizeable, comparable with NLL
Green's function effects



Results: symetric configuration (|kj1| = |kj2| = 35GeV)

Cross-section: stability with respect to ur = pr and so changes

pure LL
LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green’s function
NLL vertices 4+ improved collinear NLL Green's function
nb nb
6Co [Gev?] dCo [Ge\/i}
0.2}

0.1¢

‘ L Y i

| A 9 —10 o1

705\ _02t
Relative effect of changing ur = pr Relative effect of changing /so

by factors 2 (thick) and 1/2 (thin) by factors 2 (thick) and 1/2 (thin)



Results: symetric configuration (|kj1| = |kj2| = 35GeV)

Cross-section: PDF and Monte Carlo errors

pure LL

LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green’s function

NLL vertices 4+ improved collinear NLL Green's function

b _nb _
Co [ G2V2 } 6Co [ GeVZ ]
0.3f 0.06}
0ok 0.04f
0.02f
01f k\v’///
‘ Y
‘ ‘ ‘ .Y — 10
7 8 9 10 -0.02} e
-01 \ ~004}
_0.2F -0.06

Relative effect of the PDF errors Relative effect of the Monte Carlo errors



Results: symetric configuration (|kj1| = |kj2| = 35GeV)

Azimuthal correlation

pure LL
C1 LL vertices + improved collinear NLL Green's function
- = (COS
go < SO) NLL vertices + NLL Green's function
12

NLL vertices + improved collinear NLL Green's function

\ \ \ =Y
6 7 8 9 10
error bands = errors due to the Monte Carlo integration
dots = results obtained with Pythia (DGLAP LL MC)
squares = results obtained with Herwig (DGLAP LL MC)

@ NLL — LL vertices change results dramatically
@ At NLL, the decorrelation is very close to LL DGLAP type of Monte Carlo



Results: symetric configuration (|kj1| = |kj2| = 35GeV)

Azimuthal correlation: dependency with respect to ur = pr and so changes

G _ (cos ¢) %]- = (cos @)
12,“0 pure LL
LL vertices + imp. collinear NLL Green's fn.
NLL tices + NLL Green's fn

NLL vertices 4 imp. collinear NLL Green's fn.

10
08
06f...
04
02

Effect of changing ur = pr by factors 2 (thick) and 1/2 (thin)

a

oL = (cos ¢) y oL = (cos )
10
0.8
06f -
04
0.2

Effect of changing /50 by factors 2 (thick) and 1/2 (thin)
@ (cos ) is still rather ur = pr and so dependent
@ collinear resummation can lead to (cos¢) > 1(!) for small pur = pr

@ based on NLL double-p production (lvanov, Papa) one can expect that
small scales is disfavored (Caporale, Papa, Sabio Vera)



Motivation for asymetric configurations

@ Initial state radiation (unseen) produces divergencies if one touches the
collinear singularity g> — 0

%7
ERRERS
q /
PJ2

@ they are compensated by virtual corrections

@ this compensation is in practice difficult to implement when for some
reason this additional emission is in a "corner” of the phase space (dip in
the differential cross-section)

@ this is the case when p1 +p2 — 0
@ this calls for a resummation of large remaing logs = Sudakov resummation
PJ1

237 450
A




Motivation for asymetric configurations

@ since these resummation have never been investigated in this context, one
should better avoid that region

@ note that for BFKL, due to additional emission between the two jets, one
may expect a less severe problem (at least a smearing in the dip region

[p1] ~ [p2])
PJ1

PJ2

@ this may however not mean that the region |p1| ~ |p2| is perfectly
trustable even in a BFKL type of treatment

@ we now investigate a region where NLL DGLAP is under control



Results: asymetric configuration (|kj1| = 35GeV, |kja| = 50GeV)

bands
dots

C

1.000

0.500

0.100
0.050

0.010
0.005

Cross-section

pure LL

W} =0 LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green’s function

NLL vertices + improved collinear NLL Green's function

errors due to the Monte Carlo integration
based on the NLO DGLAP parton generator Dijet (thanks to Fontannaz)



Results: symetric configuration (|kj1| = 35GeV, k2| = 50GeV)

Azimuthal correlation: (cos ¢)

pure LL

LL vertices + imp. collinear NLL Green's fn.
NLL tices + NLL Green's fn

NLL vertices 4 imp. collinear NLL Green's fn.

7
bands =

dots =

=Y
9
errors due to the Monte Carlo integration

based on the NLO DGLAP parton generator Dijet (thanks to Fontannaz)
@ Both NLL and improved NLL results are almost flat in Y

9 no significant difference between NLL BFKL and NLO DGLAP



Results: asymetric configuration (|kj1| = 35GeV, |kja| = 50GeV)

Azimuthal correlation: (cos2yp)

C
&2 = (cos2p) pure L
0 LL vertices + imp. collinear NLL Green’s fn.
08 NLL vertices + NLL Green's fn.
NLL vertices + imp. collinear NLL Green’s fn.
0.6

6 7 8

bands = errors due to the Monte Carlo integration
dots

based on the NLO DGLAP parton generator Dijet (thanks to Fontannaz)

Same conclusions:

@ Both NLL and improved NLL results are almost flat in Y
9 no significant difference between NLL BFKL and NLO DGLAP



Results: asymetric configuration (|kj1| = 35GeV, |kja| = 50GeV)

Azimuthal correlation: dependency with respect to ur = pr and so changes

12

L — (cos o) pure LL

Co i . LL vertices + imp. collinear NLL Green's fn.
e NLL vertices + NLL Green's fn.

NLL vertices + imp. collinear NLL Green's fn.

Effect of changing /so by factors 2 (thick) and 1/2 (thin)
Again:

9 (cos ) is still rather ur = pr and so dependent

@ collinear resummation can lead to (cos¢) > 1(!) for small pr = pr



Results: asymetric configuration (|kj1| = 35GeV, |kja| = 50GeV)

Ratio of azimuthal correlations (cos2¢)/(cos ¢)

pure LL

C2 — LL vertices + imp. collinear NLL Green's fn.
c. <COS 290>/<COS 90> NLL r‘tu +\ NLL Green's i,
08+ NLL vertices + imp. collinear NLL Green's fn.
L] L] (1]
061 L] ° L] o
021
‘ ‘ ‘ LY
6 7 8 9 10
bands = errors due to the Monte Carlo integration
dots =  based on the NLO DGLAP parton generator Dijet (thanks to Fontannaz)
NB: NLL collinear improved changed nothing wrt pure NLL

This is the only observable which might still differ between NLL BFKL and
NLO DGLAP scenarii



Conclusion

@ We have performed for the first time a complete NLL analysis of
Mueller-Navelet jets
@ the correction due to NLL jets corrections have a dramatic effect, similar
to the NLL Green function corrections
@ for the cross-section:
@ it makes the prediction much more stable with respect to variation of
parameters (factorization scale, scale sg entering the rapidity definition,
Parton Distribution Functions)
o it is close to NLO DGLAP (although surprisingly a bit below!)
@ the decorrelation effect is very small:
@ it is very close to NLO DGLAP
e it is very flat in rapidity Y
@ it is still rather dependent on these parameters
@ pure NLL BFKL and collinear improved NLL BFKL leads to similar results
@ collinear improved NLL BFKL faces some puzzling behaviour for the
azimuthal correlation
@ except for (cos2¢)/{cos ¢), there is almost no difference between NLL
BFKL and NLO DGLAP based observables
@ Mueller Navelet jets are thus probably not such a conclusive observable to
see the perturbative Regge effect of QCD
@ to compare with data, a serious study of Sudakov type of effects is still
missing, both in DGLAP and BFKL approaches
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