Mueller Navelet jets at LHC - complete NLL BFKL calculation

Samuel Wallon

Laboratoire de Physique Théorique Université Paris Sud Orsay

Workshop on high energy scattering at weak and strong coupling Saclay, May 18th 2010

arXiv:1002.1365 [hep-ph]

in collaboration with

D. Colferai (Firenze), F. Schwennsen (DESY) and L. Szymanowski (SINS,

Varsaw)

Motivations

- ullet One of the important longstanding theoretical questions raised by QCD is its behaviour in the perturbative Regge limit $s\gg -t$
- Based on theoretical grounds, one should identify and test suitable observables in order to test this peculiar dynamics

hard scales: $M_1^2,\,M_2^2\gg\Lambda_{QCD}^2$ or $M_1'^2,\,M_2'^2\gg\Lambda_{QCD}^2$ or $t\gg\Lambda_{QCD}^2$ where the t-channel exchanged state is the so-called hard Pomeron

How to test QCD in the perturbative Regge limit?

What kind of observable?

- perturbation theory should be applicable: selecting external or internal probes with transverse sizes $\ll 1/\Lambda_{QCD}$ (hard γ^* , heavy meson $(J/\Psi, \Upsilon)$, energetic forward jets) or by choosing large t in order to provide the hard scale.
- governed by the "soft" perturbative dynamics of QCD

and not by its collinear dynamics
$$m = 0$$

$$e/\theta \rightarrow 0$$

$$m = 0$$

 \implies select semi-hard processes with $s\gg p_{T\,i}^2\gg \Lambda_{QCD}^2$ where $p_{T\,i}^2$ are typical transverse scale, all of the same order.

How to test QCD in the perturbative Regge limit?

Some examples of processes

- inclusive: DIS (HERA), diffractive DIS, total $\gamma^* \gamma^*$ cross-section (LEP, ILC)
- semi-inclusive: forward jet and π^0 production in DIS, Mueller-Navelet double jets, diffractive double jets, high p_T central jet, in hadron-hadron colliders (Tevatron, LHC)
- exclusive: exclusive meson production in DIS, double diffractive meson production at e^+e^- colliders (ILC), ultraperipheral events at LHC (Pomeron, Odderon)

The specific case of QCD at large s

QCD in the perturbative Regge limit

• Small values of α_S (perturbation theory applies due to hard scales) can be compensated by large $\ln s$ enhancements. \Rightarrow resummation of $\sum_{n} (\alpha_S \ln s)^n$ series (Balitski, Fadin, Kuraev, Lipatov)

$$\mathcal{A} = \underbrace{\hspace{1cm}}_{\sim s} + \underbrace{\hspace{1cm}}_{\sim s (\alpha_s \ln s)} + \cdots + \underbrace{\hspace{1cm}}_{\sim s (\alpha_s \ln s)^2} + \cdots$$

• this results in the effective BFKL ladder

$$\Longrightarrow \sigma_{tot}^{h_1 h_2 \to anything} = \frac{1}{s} Im \mathcal{A} \sim s^{\alpha_{\mathbb{P}}(0) - 1}$$

with $\alpha_{\mathbb{P}}(0)-1=C\,\alpha_s$ (C>0) Leading Log Pomeron

Opening the boxes: Impact representation $\gamma^* \gamma^* \to \gamma^* \gamma^*$ as an example

- Sudakov decomposition: $k_i = \alpha_i p_1 + \beta_i p_2 + k_{\perp i}$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- Write $d^4k_i = \frac{s}{2} d\alpha_i d\beta_i d^2k_{\perp i}$ $(\underline{k} = \text{Eucl.} \leftrightarrow k_{\perp} = \text{Mink.})$
- ullet t-channel gluons have non-sense polarizations at large s: $\epsilon_{NS}^{up/down}=rac{2}{s}\,p_{2/1}$

- Higher order corrections to BFKL kernel are known at NLL order (Lipatov Fadin; Camici, Ciafaloni), now for arbitrary impact parameter $\alpha_S \sum_{m} (\alpha_S \ln s)^n$ resummation
- impact factors are known in some cases at NLL
 - $\gamma^* \to \gamma^*$ at t=0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao)
 - forward jet production (Bartels, Colferai, Vacca)
 - $\gamma^* \to \rho$ in forward limit (Ivanov, Kotsky, Papa)

Mueller-Navelet jets: Basics

Mueller Navelet jets

- Consider two jets (hadron paquet within a narrow cone) separated by a large rapidity, i.e. each of them almost fly in the direction of the hadron "close" to it, and with very similar transverse momenta
- in a pure LO collinear treatment, these two jets should be emitted back to back at leading order: $\Delta\phi-\pi=0$ ($\Delta\phi=\phi_1-\phi_2=$ relative azimutal angle) and $k_{\perp 1}{=}k_{\perp 2}$. There is no phase space for (untagged) emission between them

Mueller-Navelet jets at LL fails

Mueller Navelet jets at LL BFKL

- in LL BFKL $(\sim \sum (\alpha_s \ln s)^n)$, emission between these jets → strong decorrelation between the relative azimutal angle jets, incompatible with $p\bar{p}$ Tevatron collider data
- a collinear treatment at next-to-leading order (NLO) can describe the data
- important issue: non-conservation of energy-momentum along the BFKL ladder. A BFKL-based Monte Carlo combined with e-m conservation improves dramatically the situation (Orr and Stirling)

(LL BFKL)

Studies at LHC: Mueller-Navelet jets

Mueller Navelet jets at NLL BFKL

- up to now, the subseries $\alpha_s \sum (\alpha_s \ln s)^n$ NLL was included only in the exchanged Pomeron state, and not inside the jet vertices Sabio Vera, Schwennsen Marquet, Royon
- the common belief was that these corrections should not be important

Quasi Multi-Regge kinematics (here for NLL BFKL)

 $\mathbf{k},\mathbf{k}'=\mathsf{Euclidian}$ two dimensional vectors

LL jet vertex:

NLL jet vertex:

Jet vertex: jet algorithms

Jet algorithms

- a jet algorithm should be IR safe, both for soft and collinear singularities
- the most common jet algorithm are:
 - k_t algorithms (IR safe but time consuming for multiple jets configurations)
 - ocone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis, Kunszt, Soper)

Results

Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

- Should partons $(|\mathbf{p}_1|, \phi_1, y_1)$ and $(\mathbf{p}_2|, \phi_2, y_2)$ combined in a single jet? $|\mathbf{p}_i|$ =transverse energy deposit in the calorimeter cell i of parameter $\Omega = (y_i, \phi_i)$ in $y - \phi$ plane
- define transverse energy of the jet: $p_J = |\mathbf{p}_1| + |\mathbf{p}_2|$
- jet axis:

$$\Omega_{c} \left\{ \begin{array}{l} y_{J} = \frac{p_{J}}{\left|\mathbf{p}_{1}\right| y_{1} + \left|\mathbf{p}_{2}\right| y_{2}} \\ \phi_{J} = \frac{p_{J}}{\left|\mathbf{p}_{1}\right| \phi_{1} + \left|\mathbf{p}_{2}\right| \phi_{2}} \end{array} \right.$$

If distances
$$|\Omega_i - \Omega_c|^2 \equiv (y_i - y_c)^2 + (\phi_i - \phi_c)^2 < R^2$$
 ($i = 1$ and $i = 2$)

 \Longrightarrow partons 1 and 2 are in the same cone Ω_c

Jet vertex: LL versus NLL and jet algorithms

LL jet vertex and cone algorithm

 $\mathbf{k}, \mathbf{k}' = \mathsf{Euclidian}$ two dimensional vectors

$$S_J^{(2)}(k_\perp; x) = \delta \left(1 - \frac{x_J}{x} \right) |\mathbf{k}| \, \delta^{(2)}(\mathbf{k} - \mathbf{k}_J)$$

Jet vertex: LL versus NLL and jet algorithms

NLL jet vertex and cone algorithm

 $\mathbf{k},\mathbf{k}'=\mathsf{Euclidian}$ two dimensional vectors

$$\mathcal{S}_{I}^{(3,\text{cone})}(\mathbf{k}',\mathbf{k}-\mathbf{k}',xz;x) =$$

$$S_J^{(2)}(\mathbf{k}, x) \Theta\left(\left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)}R_{\text{cone}}\right]^2 - \left[\Delta y^2 + \Delta \phi^2\right]\right)$$

$$\mathbf{k}'$$
 \downarrow $\mathbf{k} - \mathbf{k}', xz$

$$+ \mathcal{S}_{j}^{(2)}(\mathbf{k} - \mathbf{k}', xz) \Theta\left(\left[\Delta y^{2} + \Delta \phi^{2}\right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)}R_{\text{cone}}\right]^{2}\right)$$

$$\mathbf{0}, x \quad \mathbf{k}, x(1-z)$$

k, x(1-z)

$$\begin{bmatrix} \mathbf{k} - \mathbf{k}', xz & + \mathcal{S}_J^{(2)}(\mathbf{k}', x(1-z)) \Theta\left(\left[\Delta y^2 + \Delta \phi^2\right] - \left[\frac{|\mathbf{k} - \mathbf{k}'| + |\mathbf{k}'|}{\max(|\mathbf{k} - \mathbf{k}'|, |\mathbf{k}'|)} R_{\text{cone}}\right]^2\right),$$

Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

UV sector:

- ullet the NLL impact factor contains UV divergencies $1/\epsilon$
- ullet they are absorbed by the renormalization of the coupling: $lpha_S \longrightarrow lpha_S(\mu_R)$

IR sector:

- ullet PDF have IR collinear singularities: pole $1/\epsilon$ at LO
- these collinear singularities can be compensated by collinear singularities of the two jets vertices and the real part of the BFKL kernel
- the remaining collinear singularities compensate exactly among themselves
- soft singularities of the real and virtual BFKL kernel, and of the jets vertices compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai, Vacca)

k_T -factorized differential cross-section

Angular coefficients

$$\mathcal{C}_{\mathbf{m}} \equiv \int d\phi_{J,1} d\phi_{J,2} \cos\left(\mathbf{m}(\phi_{J,1} - \phi_{J,2} - \pi)\right)$$
$$\times \int d^2\mathbf{k}_1 d^2\mathbf{k}_2 \,\Phi(\mathbf{k}_{J,1}, x_{J,1}, -\mathbf{k}_1) \,G(\mathbf{k}_1, \mathbf{k}_2, \hat{s}) \,\Phi(\mathbf{k}_{J,2}, x_{J,2}, \mathbf{k}_2).$$

 \bullet $m=0 \Longrightarrow$ cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\mathbf{k}_{J,1}|\,\mathrm{d}|\mathbf{k}_{J,2}|\,\mathrm{d}y_{J,1}\,\mathrm{d}y_{J,2}} = \mathcal{C}_0$$

 \bullet $m > 0 \implies$ azimutal decorrelation

$$\langle \cos(m\varphi) \rangle \equiv \langle \cos(m(\phi_{J,1} - \phi_{J,2} - \pi)) \rangle = \frac{C_m}{C_0}$$

Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

- LL BFKL eigenfunctions: $E_{n,\nu}(\mathbf{k}_1) = \frac{1}{2\sqrt{2}} \left(\mathbf{k}_1^2\right)^{i\nu \frac{1}{2}} e^{in\phi_1}$
- ullet decompose Φ on this basis
- use the known LL eigenvalue of the BFKL equation on this basis:

$$\omega(n,\nu) = \bar{\alpha}_s \chi_0\left(|n|,\frac{1}{2}+i\nu\right)$$
 with $\chi_0(n,\gamma) = 2\Psi(1) - \Psi\left(\gamma + \frac{n}{2}\right) - \Psi\left(1 - \gamma + \frac{n}{2}\right)$
$$(\Psi(x) = \Gamma'(x)/\Gamma(x), \bar{\alpha}_s = N_c \alpha_s/\pi)$$

$$C_m = (4 - 3 \,\delta_{m,0}) \int d\nu \, C_{m,\nu}(|\mathbf{k}_{J,1}|, x_{J,1}) \, C_{m,\nu}^*(|\mathbf{k}_{J,2}|, x_{J,2}) \left(\frac{\hat{s}}{s_0}\right)^{\omega(m,\nu)}$$

with

$$C_{m,\nu}(|\mathbf{k}_J|, x_J) = \int d\phi_J d^2\mathbf{k} dx f(x) V(\mathbf{k}, x) E_{m,\nu}(\mathbf{k}) \cos(m\phi_J)$$

ullet at NLL, same master formula: just change $\omega(m,
u)$ and V

BFKL Green's function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions

- NLL BFKLkernel is not conformal invariant
- LL $E_{n,\nu}$ are not anymore eigenfunction
- this can be overcome by considering the eigenvalue as an operator with a part containing $\frac{\partial}{\partial u}$
- it acts on the impact factor

$$\omega(n,\nu) = \bar{\alpha}_s \chi_0 \left(|n|, \frac{1}{2} + i\nu \right) + \bar{\alpha}_s^2 \left[\chi_1 \left(|n|, \frac{1}{2} + i\nu \right) - \frac{\pi b_0}{2N_c} \chi_0 \left(|n|, \frac{1}{2} + i\nu \right) \left\{ -2 \ln \mu_R^2 - i \frac{\partial}{\partial \nu} \ln \frac{C_{n,\nu}(|\mathbf{k}_{J,1}|, x_{J,1})}{C_{n,\nu}(|\mathbf{k}_{J,2}|, x_{J,2})} \right\} \right],$$

$$2 \ln \frac{|\mathbf{k}_{J,1}| \cdot |\mathbf{k}_{J,2}|}{\mu_R^2}$$

LL substraction and s_0

- one sums up $\sum (\alpha_s \ln \hat{s}/s_0)^n + \alpha_s \sum (\alpha_s \ln \hat{s}/s_0)^n$ $(\hat{s} = x_1 x_2 s)$
- at LL s₀ is arbitrary
- natural choice: $s_0 = \sqrt{s_{0,1} s_{0,2}}$ $s_{0,i}$ for each of the scattering objects
 - possible choice: $s_{0,i} = (|\mathbf{k}_J| + |\mathbf{k}_J \mathbf{k}|)^2$ (Bartels, Colferai, Vacca)
 - but depend on k, which is integrated over
 - ŝ is not an external scale (x_{1,2} are integrated over)
 - we prefer

$$s_{0,1} = (|\mathbf{k}_{J,1}| + |\mathbf{k}_{J,1} - \mathbf{k}_{1}|)^{2} \rightarrow s_{0,1}' = \frac{x_{1}^{2}}{x_{J,1}^{2}} \mathbf{k}_{J,1}^{2}$$

$$s_{0,2} = (|\mathbf{k}_{J,2}| + |\mathbf{k}_{J,2} - \mathbf{k}_{2}|)^{2} \rightarrow s_{0,2}' = \frac{x_{2}^{2}}{x_{J,2}^{2}} \mathbf{k}_{J,2}^{2}$$

$$= e^{y_{J,1} - y_{J,2}} \equiv e^{Y}$$

- $s_0 \rightarrow s'_0$ affects
 - the BFKL NLL Green function
 - the impact factors:

$$\Phi_{\text{NLL}}(\mathbf{k}_i; s'_{0,i}) = \Phi_{\text{NLL}}(\mathbf{k}_i; s_{0,i}) + \int d^2 \mathbf{k}' \, \Phi_{\text{LL}}(\mathbf{k}'_i) \, \mathcal{K}_{\text{LL}}(\mathbf{k}'_i, \mathbf{k}_i) \frac{1}{2} \ln \frac{s'_{0,i}}{s_{0,i}} \tag{1}$$

- numerical stabilities (non azimuthal averaging of LL substraction) improved with the choice $s_{0,i} = (\mathbf{k}_i - 2\mathbf{k}_{J,i})^2$
- (1) can be used to test $s_0 o \lambda \, s_0$ dependence

Collinear improvement at NLL

Collinear improved Green's function at NLL

- ullet one may improve the NLL BFKLkernel for n=0 by imposing its compatibility with DGLAP in the collinear limit Salam; Ciafaloni, Colferai
- ullet usual (anti)collinear poles in $\gamma=1/2+i
 u$ (resp. $1-\gamma$) are shifted by $\omega/2$
- one practical implementation:
 - ullet the new kernel $ar{lpha}_s\chi^{(1)}(\gamma,\omega)$ with shifted poles replaces

$$\bar{\alpha}_s \chi_0(\gamma,0) + \bar{\alpha}_s^2 \chi_1(\gamma,0)$$

ullet $\omega(0,
u)$ is obtained by solving the implicit equation

$$\omega(0,\nu) = \bar{\alpha}_s \chi^{(1)}(\gamma,\omega(0,\nu))$$

for $\omega(n,\nu)$ numerically.

• there is no need for any jet vertex improvement because of the absence of γ and $1-\gamma$ poles (numerical proof using Cauchy theorem "backward")

Numerical implementation

In practice

- MSTW 2008 PDFs (available as Mathematica packages)
- $\mu_R = \mu_F$ (this is imposed by the MSTW 2008 PDFs)
- two-loop running coupling $lpha_s(\mu_R^2)$
- We use a ν grid (with a dense sampling around 0)
- all numerical calculations are done in Mathematica
- ullet we use Cuba integration routines (in practice Vegas): precision 10^{-2} for 500.000 max points per integration
- mapping $|\mathbf{k}| = |\mathbf{k}_J| \tan(\xi \pi/2)$ for \mathbf{k} integrations $\Rightarrow [0, \infty[\to [0, 1]$
- although formally the results should be finite, it requires a special grouping
 of the integrand in order to get stable results
 - ⇒ 14 minimal stable basic blocks to be evaluated numerically

Results: symetric configuration ($|\mathbf{k}_{J,1}| = |\mathbf{k}_{J,2}| = 35 \,\mathrm{GeV}$)

Cross-section

Differential cross section in dependence on Y for $|\mathbf{k}_{J,1}| = |\mathbf{k}_{J,2}| = 35 \,\mathrm{GeV}$. error bands=errors due to the Monte Carlo integration (2% to 5%)

The effect of NLL vertex correction is very sizeable, comparable with NLL Green's function effects

Results: symetric configuration ($|\mathbf{k}_{J,1}| = |\mathbf{k}_{J,2}| = 35 \,\mathrm{GeV}$)

Cross-section: stability with respect to $\mu_R=\mu_F$ and s_0 changes

pure LL
LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green's function
NLL vertices + improved collinear NLL Green's function

Relative effect of changing $\mu_R = \mu_F$ by factors 2 (thick) and 1/2 (thin)

Relative effect of changing $\sqrt{s_0}$ by factors 2 (thick) and 1/2 (thin)

Cross-section: PDF and Monte Carlo errors

pure LL
LL vertices + improved collinear NLL Green's function
NLL vertices + NLL Green's function
NLL vertices + improved collinear NLL Green's function

Relative effect of the PDF errors

Relative effect of the Monte Carlo errors

Introduction

Azimuthal correlation

NLL → LL vertices change results dramatically

dots

At NLL, the decorrelation is very close to LL DGLAP type of Monte Carlo

Introduction

Results: symetric configuration $(|\mathbf{k}_{J,1}| = |\mathbf{k}_{J,2}| = 35 \,\mathrm{GeV})$

Azimuthal correlation: dependency with respect to $\mu_R = \mu_F$ and s_0 changes

Effect of changing $\mu_R = \mu_F$ by factors 2 (thick) and 1/2 (thin)

Effect of changing $\sqrt{s_0}$ by factors 2 (thick) and 1/2 (thin)

- $\langle \cos \varphi \rangle$ is still rather $\mu_R = \mu_F$ and s_0 dependent
- collinear resummation can lead to $\langle \cos \varphi \rangle > 1(!)$ for small $\mu_R = \mu_F$
- based on NLL double- ρ production (Ivanov, Papa) one can expect that small scales is disfavored (Caporale, Papa, Sabio Vera)

Motivation for asymetric configurations

• Initial state radiation (unseen) produces divergencies if one touches the collinear singularity $\mathbf{q}^2 \to 0$

- they are compensated by virtual corrections
- this compensation is in practice difficult to implement when for some reason this additional emission is in a "corner" of the phase space (dip in the differential cross-section)
- this is the case when $\mathbf{p}_1 + \mathbf{p}_2 \to 0$
- this calls for a resummation of large remaing logs ⇒ Sudakov resummation

Motivation for asymetric configurations

- since these resummation have never been investigated in this context, one should better avoid that region
- note that for BFKL, due to additional emission between the two jets, one may expect a less severe problem (at least a smearing in the dip region $|\mathbf{p}_1| \sim |\mathbf{p}_2|$

$$\mathbf{p}_{J,1}$$

- ullet this may however not mean that the region $|{f p}_1| \sim |{f p}_2|$ is perfectly trustable even in a BFKL type of treatment
- we now investigate a region where NLL DGLAP is under control

Cross-section

dots based on the NLO DGLAP parton generator Dijet (thanks to Fontannaz)

bands

Azimuthal correlation: $\langle \cos \varphi \rangle$

- dots based on the NLO DGLAP parton generator Dijet (thanks to Fontannaz)
 - ullet Both NLL and improved NLL results are almost flat in Y
 - no significant difference between NLL BFKL and NLO DGLAP

Results: asymetric configuration ($|\mathbf{k}_{J,1}| = 35 \,\mathrm{GeV}$, $|\mathbf{k}_{J,2}| = 50 \,\mathrm{GeV}$)

Azimuthal correlation: $\langle \cos 2\varphi \rangle$

bands errors due to the Monte Carlo integration dots based on the NLO DGLAP parton generator Dijet (thanks to Fontannaz)

Same conclusions:

- ullet Both NLL and improved NLL results are almost flat in Y
- no significant difference between NLL BFKL and NLO DGLAP

Results: asymetric configuration ($|\mathbf{k}_{J,1}| = 35 \,\mathrm{GeV}$, $|\mathbf{k}_{J,2}| = 50 \,\mathrm{GeV}$)

Azimuthal correlation: dependency with respect to $\mu_R = \mu_F$ and s_0 changes

Effect of changing $\mu_R = \mu_F$ by factors 2 (thick) and 1/2 (thin)

Effect of changing $\sqrt{s_0}$ by factors 2 (thick) and 1/2 (thin)

Again:

- ullet $\langle\cosarphi
 angle$ is still rather $\mu_R=\mu_F$ and s_0 dependent
- collinear resummation can lead to $\langle \cos \varphi \rangle > 1(!)$ for small $\mu_R = \mu_F$

+ imp. collinear NLL Green's fn.

Results: asymetric configuration ($|\mathbf{k}_{J,1}| = 35 \,\mathrm{GeV}, \, |\mathbf{k}_{J,2}| = 50 \,\mathrm{GeV}$)

Ratio of azimuthal correlations $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$

This is the only observable which might still differ between NLL BFKL and NLO DGLAP scenarii

Conclusion

- We have performed for the first time a complete NLL analysis of Mueller-Navelet jets
- the correction due to NLL jets corrections have a dramatic effect, similar to the NLL Green function corrections
- for the cross-section:
 - it makes the prediction much more stable with respect to variation of parameters (factorization scale, scale s_0 entering the rapidity definition, Parton Distribution Functions)
 - it is close to NLO DGLAP (although surprisingly a bit below!)
- the decorrelation effect is very small:
 - it is very close to NLO DGLAP
 - ullet it is very flat in rapidity Y
 - it is still rather dependent on these parameters
- pure NLL BFKL and collinear improved NLL BFKL leads to similar results
- collinear improved NLL BFKL faces some puzzling behaviour for the azimuthal correlation
- except for $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$, there is almost no difference between NLL BEKL and NLO DGLAP based observables
- Mueller Navelet jets are thus probably not such a conclusive observable to see the perturbative Regge effect of QCD
- to compare with data, a serious study of Sudakov type of effects is still missing, both in DGLAP and BFKL approaches ◆□ → ◆□ → ◆□ → □ → ● ◆ ○ ◆