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Introduction

Introduction
Why going beyond leading twist?

@ Some processes may require an inclusion of higher twist corrections for
finite values of Q2. This might be the case of DVCS

@ This might be a formal need: see for example the QED gauge invariance
of DVCS amplitude, violated by terms ~ Ar (A = transfered momentum)
3-body t-channel exchange solves this problem at twist 3
Anikin, Pire, Teryaev '00

@ This might be an experimental requirement:
e.g.: pr-electroproduction which is copiously produced, while vanishing at
twist 2!

Our aim is to construct a consistent and efficient tool to deal with subleading
twist corrections
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Introduction

Exclusive p-production

Our studies attempt to describe exclusive processes involving the production of
p-mesons in diffraction-type experiment. We choose ¢ = t,,,, for simplicity.
® 7"(q) +77(¢") = pr(p1) + p(p2) process in
et e” — et e pr(p1) + p(p2) with double tagged lepton at ILC
o v*(g)+ P — pr(p1) + P at HERA

H1 p electroproduction (preliminary)

=) F e 1 HERA-1 prel.
h died b d = [ =HIsV Q° [GeV?]
This process was studie H1 and ZEUS 8,001
P . Yy T103§— —r 20
@ the total cross-section strongly g e 33
. : o r
decreases with Q? 102F et &5
@ dramatic increase with W? = s.,-p — 19
(transition from soft to hard regime 10 ¢ T e
governed by Q?) i 370
! e — Fitow®
(from X. Janssen (H1), DIS 2008) 10°
W [GeV]
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Exclusive p-production

Polarization effects in v* P — p P at HERA

[Tyql 71 Tool
F [} Hlpprell,
@ one can experimentally measure all . g A Higprel
spin density matrix elements 0758 a
os5fF ® e .
@ at t = tmin one can experimentally distinguish 0.25 fT ‘+
v; — pr: dominates  (twist 2 dominance) 0 |t|1[Gevz]
yr — pr:  sizable (twist 3)
[Tyl 7 1Tool
F ® Hlpprel
1 o A Hlgprel
@ S-channel helicity conservation: 0.75 f&
osF
vz = pL (= Too) CE %
* 0.25 |- °
Yr — PT; E Ll
0 20
Dominate with respect to all other transitions. Q% [GeV?
Experimentally, v;- — pr is dominated (from X. Janssen (H1),
DIS 2008)

by v7(—y = pr(—y and vy = pry (= Ti1)

4/36



Introduction

ooe

Introduction

Exclusive p-production

The processes with vector particle such as p—meson probe deeper into the fine
features of QCD.
It deserves theoretical developpement to describe HERA data in its special
kinematical range:
9 large s+ p = small-x effects expected, within k;-factorization
@ large Q® = hard scale = perturbative approach and collinear factorization
= the p can be described through its chiral even Distribution Amplitudes

pr twist 2
T twist 3

The main ingredient is the v* — p impact factor
@ For pr, special care is needed: a pure 2-body description would violate
gauge invariance.
@ We show that:
@ Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor

o Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
°

Impact factor for exclusive processes

Theoretical motivations

QCD in perturbative Regge limit

@ In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in ¢ channel)

@ BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

_

Born order: BFKL ladder:

effective vertex
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Impact factor for exclusive processes

k1 factorization

y*~* — pp as an example
@ Use Sudakov decomposition k = api + Bp2 + ki (2 = p2 =0, 2p1 - pa = )
o write d'k = £ dadBd’k.

@ t—channel gluons with non-sense polarizations (e¥7, = 2 py, e?%™ = 2 p;)
dominate at large s

I1 (iIIustration for 2-body case)

= set a=0and [df

7 (q1) 50

p(p1 +71)
c><

= set 3=0and [da

p(m —7r1)
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Impact factor for exclusive processes

k1 factorization

impact representation k = Eucl. & k; = Mink.

./\/l:is/ o ’k B (@)=r D) (g p _ ) 7 (@)= 0E) (L
us

— k
257 (o~ b)? e

The 77 +(q)g(k1) — pr,r g(ke) impact factor is normalized as

q)ﬁ’**’ﬂ(EQ) — Tk 2_18 ;l_: Disc,. SZ* g_>pg(E2)7

with k = (g + k)2 = Bs — Q2 — k2
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Impact factor for exclusive processes

Gauge invariance within subleading twists

Gauge invariance

@ QCD gauge invariance (probes are colorless)
= impact factor should vanish when k — Oorr —k — 0

@ In the following we will restrict ourselve to the case t = timin, i.e. tor =0

2 2
k1:@p2+kl

2
ko = " py + ko,

This kinematics takes into account skewedness effects along p2
t = tmin = restriction to the transitions

{ 0 — 0 (twist 2)
(+or-) — (4+or-) (twist 3)

@ At twist 3 level (for 77 — pr transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
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Collinear factorization
Light-Cone Collinear approach

@ The impact factor can be written as

<I>:/d4l---tr[H(l~~) S(---)]

hard part soft part

@ At the 2-body level:
Saall) = / d*z e~ (p(p)(0) B(2)]0),

@ H and S are related by [ d*l and by the summation over spinor indices
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

1 - Momentum factorization
@ Use Sudakov decomposition in the form (p =p1, n =2p2/s =>p-n=1)
b = ypu + L+ (P, y=l-n
scaling: 1 1/Q 1/Q?
@ Taylor expansion of the hard part H(¢) along the collinear direction p:

OH(0)
ETA

({—yp)a+... with ((—yp)a~ly

l=up

H(6) = H(yp) +
o 11 K2 derivative of the soft term: [ d*z e (p(p)|(0) i da‘—id_)(z)|0>

= ® = > “modified hard part (purely y-dependent)” ®, “modified soft terms”
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Collinear factorization
Light-Cone Collinear approach: (2-body case)

2 - Spinorial (and color) factorization

@ Use Fierz decomposition of the Dirac (and color) matrices (0) ¢(z) and

W(0)i d. B(=):

@ ® has now the simple factorized form:
@ = [ dy {ur [Halyp) 1) S}olu) + 1[0, Hog(yp) T) 0133 (0)}
T' = 4* and ~* +® matrices

S = [ e P @) EOm T w(0)0)

dA
—e

i —i\y <p(p)|1;()\n) I'i I (0)]0)

01 Szl;q (y) =

@ choose axial gauge condition for gluons, i.e. n- A =0 = no Wilson line
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Collinear factorization
Light-Cone Collinear approach: (3-body case)

Factorization of 3-body contributions

@ 3-body contributions start at genuine twist 3
= no need for Taylor expansion

@ Momentum factorization goes in the same way as for the 2-body case

@ Spinorial (and color) factorization is similar:
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Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators op twist2
kinematical twist 3 (WW)
pr genuine twist 3
@ vector correlator genuine + kinematical twist 3

() [B()00)/0) Zmy £ [o1() (€7 m)pu+05(v) €57
@ axial correlator

(o) 9(2)757.1(0)[0) Z my fri0a(y) €pnss X ps s

@ vector correlator with transverse derivative

—

(o) [D(2) i 0 (0)|0) Z my £ 0] (y) puei”

@ axial correlator with transverse derivative
-

(D)D) 75701 O (0)|0) Z 1m0y £ 05 () P Earps €X' Pa s,

where y (§ = 1 — y) = momentum fraction along p = p; of the quark (antiquark) and

z jgl dyexp[iyp- 2], with 2 = An

= 5 2-body DAs
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Collinear factorization

Parametrization of vacuum—to—rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

@ vector correlator

_ - X
(p(P) | (21)Vug AL (22)¥(0)[0) = m,, 3 B(y1,y2) pues’
@ axial correlator

(p(D) [ (21)57ug AL (22)1(0)[0) 2 my f3 i D(y1, y2) P cargs €4" ps s,

where y1, 2, y2 — y1 = quark, antiquark, gluon momentum fraction

1 1
and = Jdyr [dy2 expliyip-2z1 +i(y2 —y1)p- 2z2], with z12 = An
0 0

= 2 3-body DAs
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€000

Collinear factorization

Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)

genuine twist 3
genuine + kinematical twist 3

@ Dirac equation leads to

—

P O0(0)aBs(z)) =0 (i Du=i 8, +94,)
@ Apply the Fierz decomposition to the above 2 and 3-body correlators
— (@) §(=)) = 1 DM@ 7+ 7B 35708
@ = 2 Equations of motion:
g1 es(y1) + G palyn) +¢1 (1) + Pa(y)
+/ﬁwk¥B@hmH%?D@hwﬂ:0 and (71 < 1)
@ In WW approximation: genuine twist 3 =0ie. B=D =0
[(y =) 2" (1) — 23" ()]

YW () — e (w)]

N[

oh(y) =

el (y)=3ly—D e
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Collinear factorization

n—independence

A minimal set of DAs

@ The non-perturbative correlators cannot be obtained from perturbative

QCD (1)
@ one should reduce them to a minimal set before using any model

@ this can be achieved by using an additional condition:

independence of the full amplitude with respect to the light-cone vector n
n enters 3 places:

o light-cone direction of z: z = An
o definition of pp polarization: ep - n =10
@ axial gauge: n-A=0
= we prove that 3 independent Distribution Amplitudes are needed:
7 - 2 (=nb of equations of motion) - 2 (=nb of eq. from n-ind. cond.)

o1(y) «— 2 body twist 2 correlator
B(y1, y2) <« 3 body genuine twist 3 vector correlator
D(y1, y2) <« 3 body genuine twist 3 axial correlator

17 /36



Collinear factorization
00e0

Collinear factorization

n—independence

n—independence in practice

@ pr polarization: ezT =e;,—pue"-n keeping n-p=1 ks

ki
@ for the full factorized amplitude:

dA
=H®S =0
A ® dn®
@ rewrite hard terms in one single form, of 2-body type: use Ward identities

Example: hard 3-body — hard 2-body

tr [Hsp(y1,y2) p° #] By1, y2) =

(tr [H2(y1) p] — tr [H2(y2) p]) B(y1, y2),

Y1 — Y2
Y1 Y1 Y2
(y1 = y2) pu v = -
T— yo 15y 1=y
@ thus, symbolically,
as
dnin
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Collinear factorization

n—independence

Constraints from n—independence  twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

@ vector correlators

d r o
a7 (y1) = —p1(y1) + p3(y1)

1
d
—¢t [ = (B(y1,v2) + B(yz, )
Y2 — Y1
0
@ axial correlators

1

d 7 A/ dy2
— = - | —2— (D, D(ys,
dylw(yl) ealyr) — G yZ_yl( (y1,92) + D(y2,41))
0
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Collinear factorization

A set of independent non-perturbative correlators

. twist 2
Solution kinematical twist 3 (WW)

genuine twist 3
genuine + kinematical twist 3

@ the set of 4 equations (2 EOM + 2 n-independence relations) can be

solved analytically
@ 7 — 3 independent DAs
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Computation and results
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Computation and results
Computation of the hard part

2-body diagrams

} twist 2 (yf — pL)

% 3 twist 3 (yp — pr)

@ without derivative

o

@ practical trick for computing 9, H : use the Ward identity

- = ® where —=——=
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Computation and results
Computation of the hard part

3-body diagrams

@ “abelian” type

oo

S il
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Computation and results
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Computation and results
Recall:

i — pr impact factor

ab
CD“/L—*PL(E2) 269 fp 6 /dym

pure twist 2 scaling (from p-factorization point of view)

’Q2+k2
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Computation and results

Results:

4 — pr impact factor:

Spin Non-Flip/Flip separation appears

OVTIT (K?) = @177 (K T g+ BF 0T (K T,
where

Ty =—(ey-€") and Ty = (67'2)2(6 k) + (ewée )
+ -
-+

+o+

—_ — —

non-flip transitions { flip transitions {
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Computation and results

Results:

pure twist 3 scaling (from p-factorization point of view)

2v2Q?% 2N 1 (1—w1) (B2 +Q2y1 (1 —v1))?
(1 —y1)k? (2- Ne/Cp)Q?
2o [dy d YV B (41 y9)— 2 D (91 v: y1 {
/ vr vz [43 (wi,v2) =65 D (n UZ)] E24+Q%2y1 (1 —w1) [k2(y1 —y2 + 1)+ Q%y1 (1 —y2)

2 sab k2 +2Q%y1 (1 —y1)) k> - -
_egmplp {—2 /dyl ( ) [(2y1 - 1)5011 (y1) +¢f\(y1)]

N, Q? v A, 2+ Nc/Cp
T Cr 12 T 0% 91 (32 = y1)] - 2/dy1 dya [Cg B (y1,v2) + €3 D(Ulsy2)} {71 _—
+ y1 Q2 ( (2= Nc/CF) y1 K> _2>
k2 +Q%y1 (1 —y1) \k2(y1 —y2+ 1) +Q%y1 (1 —y2)
G Ne (b1 —v2) A~ w2) Q? ]}
Cr 11—y k2 (1—y1) + Q2% (y2 —y1) (1 — y2)
and
L 2 sab . k2 Q2 . o
@ TIT 2y = 29 mele 4/a = y - —1) ]
£ &) 2v2Q?% 2N, ./ . (k2 + Q2y1 (1 —y1))? [@Awn G =0 <yl>]
2
_4./dy1 dmm [C?D (y1,92) (=y1 +y2 — 1) + ¢ B (v1,v2) (y1 +y2 — 1)]
[ (2 - Ne/CFr)Q? NG Q? ”
E2(y1 —y2+ 1) +Q%y1 (1 —y2) Cr y2k? +Q%y1 (y2 — v1)
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Computation and results

Results:

WW limit
@ WW limit: keep only twist 2 + kinematical twist 3 terms (i.e B = D = 0)
@ The only remaining contributions come from the two-body correlators
@ non-flip transition

T (1?)

=
<1>f —

vy

1
—empfp 590 /dy =91 W) +2y568 Y () + 5 W(y)
2v2Q2 2Nc.0

Q

242 (k% +2

2yy) ((yiy) STWW () 4o IW w (l/>)
y7 (k2 +Q2y(1—y))>

which simplifies, using equation of motion:

/dy[(y DTV () + 29568V (1) + @5V ()] = 0

p 1 2 (1.2 2, =
qf’}_ﬁpT(ﬁ) _empfp 8¢ / yzk (E t2Q yy)
T VEQR 2N ) Ty (B2 + Q2w o)’

[Gy-Del ™YW +e3" Y w)] -

@ flip transition:

L 5ab
YT PT ;12
‘Pn,q.}'. (&%) =~

1
empfp 2k2 Q2 _ TWW TWW
V2Q? 2N, 0/ (k% +Q2yg)? (o2 W AT ]
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Computation and results

Discussion:

@ The obtained results are gauge invariant:
PTTPT (0 when k — 0
o this is straightforward in the WW limit

@ at the full twist 3 order:

9 the CF part of the abelian 3-body contribution cancels the 2-body
contribution after using the equation of motion

9 the N, part of the abelian 3-body contribution cancels the 3-body
non-abelian contribution

9 thus v} — pr impact factor is gauge-invariant only provided the 2 and
3-body contributions have been taken into account in a consistent way
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Computation and results
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Computation and results

Discussion:

@ Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation:

o the flip contribution obviously does not have any end-point singularity
because of the k? which regulates them

@ the potential end-point singularity for the non-flip contribution is spurious
since % (y), ¢T (y) vanishes at y = 0,1 as well as B(y1,y2) and D(y1,y2).
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Transversity GPDs

Transversity GPDs
Twist 2 GPDs

Classification of twist 2 GPDs

@ For quarks, one should distinguish the exchanges
@ without helicity flip (chiral-even IV matrices): 4 chiral-even GPDs:

He 222120, ppF g Be, 79 2220 polarized PDFs Ag, £
1 [dzt . =+
F4 — - P~ z =1 — (1 ‘
2/—27r e Plat=22)7 az2) )| __,

T
= o [Ee a0 w0 + B 60 30 T ) |,
- 1 dz+ .
Fo— S [ e ek s
- - A—
= o [T @ e ) + B 60 a6 ) .

@ with helicity flip ( chiral-odd I mat.): 4 chiral-odd GPDs:

HZ, £=0,1=0, quark transversity PDFs Apgq, Ef, [}% E~%

1 dzt ixP 2zt 0 1 Ns —i /1

2 e wla-32ic G )| __
_ 1
T op-

. P A A—P? AT —ATHE 4T P Pl
a(p') {H%ia*“rﬂ% 5 +Ep =2 R T 7}



Transversity GPDs

Transversity GPDs
Twist 2 GPDs

Classification of twist 2 GPDs

@ analogously, for gluons:

@ 4 gluonic GPDs without helicity flip:

o9 220 ppF 4y
E9
£=0,t=
Hg 50,620, polarized PDF z Ag
B9

@ 4 gluonic GPDs with helicity flip:

(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity
cannot be compensated by a spin 1/2 target)
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Transversity GPDs

Spin transversity in the nucleon

What is transversity?
@ Tranverse spin content of the proton:

| ) @) ~ =)+ e)
| 1)) ~ =) =)
spin along x helicity state

@ An observable sensitive to helicity spin flip gives thus access to the
transversity Arq(x), which is very badly known (first data have recently
been obtained by COMPASS)

@ The transversity GPDs are completely unknown

@ Chirality: q+(2) = (1 £+°)g(2) with q(2) = g4 (2) + g (2)
Chiral-even: chirality conserving
g (27" qx(—2) et @ (27" g+ (=2)
Chiral-odd: chirality reversing
qr(2)-1-gx(=2), qx(2)-7°-qx(=2) et g (2)[*,7"]gx(—2)
@ For a massless (anti)particle, chirality = (-)helicity
@ Transversity is thus a chiral-odd quantity

@ QCD and QED are chiral even = A ~ (Ch.-odd); ® (Ch.-even),
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Transversity GPDs

Spin transversity in the nucleon

How to get access to transversity?

@ The dominant DA for pr is of twist 2 and chiral-odd ([v*,~"] coupling)
@ Unfortunately v* NT — pr N ' =0
o this is true at any order in perturbation theory (i.e. corrections as powers of
as), since this would require a transfer of 2 units of helicity from the
proton: impossible! Collins, Diehl '00

o diagrammatic argument at Born order:

o 7t

vanishes: v*[v*,¥"]va =0

N N’ N N’
Diehl, Gousset, Pire '99
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Transversity GPDs

Spin transversity in the nucleon
~N — 77 p%. N’ gives access to transversity

@ Factorization a la Brodsky Lepage of ¥+ 7 — 7 + p at large s and fixed

angle (i.e. fixed ratio t'/s, u’/s)
= factorization of the amplitude for v + N — 7 + p+ N’ at large M7,
¥ t'
Y ) - 7t chiral-even twist 2 DA
. M:p
p%. chiral-odd twist 2 DA

v t’

o a2
t <Mz, chiral-odd twist 2 GPD

@ a typical non-vanishing diagram:
M. El Beiyad, P. Pire, M. Segond, L. Szymanowski, S.W

7,
B T
< Phys.Lett.B688:154-167,2010
0
L Pr see also, at large s, with Pomeron exchange:
pu— R. Ilvanov, B. Pire, L. Symanowski, O. Teryaev '02
N BT
R. Enberg, B. Pire, L. Symanowski '06
@ These processes with 3 body final state can give access to all GPDs:
]\/[,2”) plays the role of the v* virtuality of usual DVCS (here in the
time-like domain) JLab, COMPASS
33/36
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Transversity GPDs
Chiral-odd GPDs beyond leading twist

Classification of higher twist chiral-odd GPDs (pion case)

Two sources of higher twist contributions for “DVCS™:

7 (C=-)
. or axial-vector (C' = +)
i both chiral-even

7 (C=-)
. or axial-vector (C' = +)
. both chiral-even

scalar (C' = +)’,\’l\l
N

scalar (C = +)’,\’l\l
coN chiral-odd

chiral-odd

™ e ™ o

A contributions genuine higher twist contributions:
(analogous to the ¢, for DAs)  transversally polarized t—channel gluons
@ Introduce a set of chiral-odd GPDs up to a given twist
@ Write QCD equations of motion
@ When factorizing long/short distance dynamics, one introduces an

arbitrary light-cone vector n which enters

o the gauge fixing

@ the l-space definition

Write n—independency contraints
This should provide a set of independent GPDs, in a consistent way when
truncating at a given twist
B. Pire, L. Szymanowski, S. W., in progress
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Conclusions
1

@ We have performed a full up to twist 3 computation of the v* — p impact
factor, in the t =ty limit.

9 Our result respects gauge invariance.

@ It is free of end-point singularities
(this should be contrasted with standard collinear treatment, at moderate
s, where kr-factorization is NOT applicable: see Mankiewicz-Piller).

@ In this talk we relied on the Light-Cone Collinear approach

(Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev),
which is non-covariant, but very efficient for practical computations.
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Conclusions
2

@ Comparison with a fully covariant approach by Ball+Braun et al:
We have established the dictionary between the two approaches within a
full twist 3 treatment:

V(y, 1 —y2, y2 —y1)

Blui. v = — |
R Y2—4
D(y1, y2) = Ay, 1 -2, 92 — 1)
Y2 —
ory) = fompdy ()
es(y) = fome g(v)(y)’
1 9@
‘PA(TJ) = _pr mpgTy(y)

@ We also performed calculations of the same impact factor within the
covariant approach by Ball+Braun et al: calculations proceed in quite
different way : eg. no @fA—DAs but Wilson line effects are important !
We got a full agreement with our approach

@ The Light-Cone Collinear approach is systematic and simple. It can be
extended to any process.
e.g.: classification of chiral-odd GPDs beyond leading twist.
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