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Introduction
Why going beyond leading twist?

Some processes may require an inclusion of higher twist corrections for
finite values of Q2. This might be the case of DVCS

This might be a formal need: see for example the QED gauge invariance
of DVCS amplitude, violated by terms ∼ ∆T (∆ = transfered momentum)
3-body t-channel exchange solves this problem at twist 3
Anikin, Pire, Teryaev ’00

This might be an experimental requirement:
e.g.: ρT -electroproduction which is copiously produced, while vanishing at
twist 2!

Our aim is to construct a consistent and efficient tool to deal with subleading
twist corrections
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Introduction
Exclusive ρ-production

Our studies attempt to describe exclusive processes involving the production of
ρ-mesons in diffraction-type experiment. We choose t = tmin for simplicity.

γ∗(q) + γ∗(q′)→ ρT (p1) + ρ(p2) process in
e+ e− → e+ e−ρT (p1) + ρ(p2) with double tagged lepton at ILC

γ∗(q) + P → ρT (p1) + P at HERA
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(transition from soft to hard regime
governed by Q2)

(from X. Janssen (H1), DIS 2008)
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Introduction
Exclusive ρ-production

Polarization effects in γ∗ P → ρ P at HERA
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(from X. Janssen (H1),
DIS 2008)

one can experimentally measure all
spin density matrix elements

at t = tmin one can experimentally distinguish


γ∗L → ρL : dominates (twist 2 dominance)
γ∗T → ρT : sizable (twist 3)

S-channel helicity conservation:


γ∗L → ρL (≡ T00)
γ∗T → ρT ,

Dominate with respect to all other transitions.
Experimentally, γ∗T → ρT is dominated
by γ∗T (−) → ρT (−) and γ∗T (+) → ρT (+) (≡ T11)
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Introduction
Exclusive ρ-production

The processes with vector particle such as ρ−meson probe deeper into the fine
features of QCD.
It deserves theoretical developpement to describe HERA data in its special
kinematical range:

large sγ∗P ⇒ small-x effects expected, within kt-factorization

large Q2 ⇒ hard scale ⇒ perturbative approach and collinear factorization
⇒ the ρ can be described through its chiral even Distribution Amplitudes


ρL twist 2
ρT twist 3

The main ingredient is the γ∗ → ρ impact factor

For ρT , special care is needed: a pure 2-body description would violate
gauge invariance.

We show that:
Including in a consistent way all twist 3 contributions, i.e. 2-body and
3-body correlators, gives a gauge invariant impact factor

Our treatment is free of end-point singularities and does not violates the
QCD factorization
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Impact factor for exclusive processes
Theoretical motivations

QCD in perturbative Regge limit

In this limit, the dynamics is dominated by gluons (dominance of spin 1
exchange in t channel)

BFKL (and extensions: NLL, saturations effects, ...) is expected to
dominate with respect to Born order at large relative rapidity.

Born order: BFKL ladder:
gluon

reggeon

effective vertex
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Impact factor for exclusive processes
kT factorization

γ∗ γ∗ → ρ ρ as an example

Use Sudakov decomposition k = αp1 + β p2 + k⊥ (p2
1 = p2

2 = 0, 2p1 · p2 = s)

write d4k = s
2
dα dβ d2k⊥

t−channel gluons with non-sense polarizations (ǫ
up
NS

= 2
s

p2, ǫdown
NS = 2

s
p1)

dominate at large s

(illustration for 2-body case)

γ∗(q1)

γ∗(q2)

ρ(p1 + r⊥)

ρ(p2 − r⊥)

l1

−l̃1

l2

−l̃2

βր

αց
k r − k

R
d2k⊥

α≪ αquarks ⇒ set α = 0 and
R
dβ

β ≪ βquarks
⇒ set β = 0 and

R
dα

7 / 36



Introduction Impact factor for exclusive processes Collinear factorization Computation and results Transversity GPDs Conclusions

Impact factor for exclusive processes
kT factorization

impact representation k = Eucl. ↔ k⊥ = Mink.

M = is

Z
d2 k

(2π)2k2 (r − k)2
Φγ∗(q1)→ρ(p

ρ
1
)(k, r − k) Φγ∗(q2)→ρ(p

ρ
2
)(−k,−r + k)

The γ∗L,T (q)g(k1)→ ρL,T g(k2) impact factor is normalized as

Φγ∗→ρ(k2) = eγ∗µ 1

2 s

Z
dκ

2π
Discκ S

γ∗ g→ρ g
µ (k2),

with κ = (q + k)2 = β s − Q2 − k2

Φ
q

k r − k

ρ
κ

|
{
z

}

κ
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Impact factor for exclusive processes
Gauge invariance within subleading twists

Gauge invariance

QCD gauge invariance (probes are colorless)
⇒ impact factor should vanish when k→ 0 or r − k → 0

In the following we will restrict ourselve to the case t = tmin, i.e. to r = 0

Φ
q

k1 = k k2

ρ

k1 = κ+Q2+k2

s
p2 + k⊥

k2 = κ+k2

s
p2 + k⊥,

k2
1 = k2

2 = −k2

This kinematics takes into account skewedness effects along p2

t = tmin ⇒ restriction to the transitions


0 → 0 (twist 2)
(+ or -) → (+ or -) (twist 3)

At twist 3 level (for γ∗T → ρT transition), gauge invariance is a non trivial
statement which requires 2 and 3 body correlators
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Collinear factorization
Light-Cone Collinear approach

The impact factor can be written as

Φ =

Z

d4l · · · tr[H(l · · · ) S(l · · · )]

hard part soft part

l
q

Hqq̄ Sqq̄

ρ
+

l
q

Hqq̄g Sqq̄g

ρ
+ · · ·

At the 2-body level:

Sqq̄(l) =

Z

d4z e−il·z〈ρ(p)|ψ(0) ψ̄(z)|0〉,

H and S are related by
R
d4l and by the summation over spinor indices
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Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (2-body case)

1 - Momentum factorization

Use Sudakov decomposition in the form (p = p1, n = 2 p2/s⇒ p · n = 1)

lµ = y pµ + l⊥µ + (l · p)nµ, y = l · n

scaling: 1 1/Q 1/Q2

Taylor expansion of the hard part H(ℓ) along the collinear direction p:

H(ℓ) = H(yp) +
∂H(ℓ)

∂ℓα

˛
˛
˛
˛
ℓ=up

(ℓ− y p)α + . . . with (ℓ− y p)α ≈ ℓ
⊥
α

l⊥α
F ourier
−−−−→ derivative of the soft term:

R
d4z e−iℓ·z〈ρ(p)|ψ(0) i

←→
∂α⊥ ψ̄(z)|0〉

=⇒ Φ =
P

“modified hard part (purely y-dependent)” ⊗y “modified soft terms”
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Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (2-body case)

2 - Spinorial (and color) factorization

Use Fierz decomposition of the Dirac (and color) matrices ψ(0) ψ̄(z) and

ψ(0) i
←→
∂⊥ ψ̄(z):

ρ
k k

l
q

Γ Γ

Hqq̄ S̃qq̄ +
ρ

k k

l
q

Γ Γ

∂⊥Hqq̄ ∂⊥S̃qq̄

Φ has now the simple factorized form:

Φ =

Z

dy
n

tr [Hqq̄(y p) Γ] SΓ
qq̄(y) + tr [∂⊥Hqq̄(y p) Γ] ∂⊥S

Γ
qq̄(y)

o

Γ = γµ and γµ γ5 matrices

SΓ
qq̄(y) =

Z
dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) Γψ(0)|0〉

∂⊥S
Γ
qq̄(y) =

Z
dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) Γ i

←→
∂⊥ ψ(0)|0〉

choose axial gauge condition for gluons, i.e. n ·A = 0 ⇒ no Wilson line
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Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (3-body case)

Factorization of 3-body contributions

3-body contributions start at genuine twist 3
⇒ no need for Taylor expansion

Momentum factorization goes in the same way as for the 2-body case

Spinorial (and color) factorization is similar:

ρ
Hqq̄g S̃qq̄g

→

ρ

Hqq̄g S̃qq̄g

Γ Γ
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Collinear factorization
Parametrization of vacuum–to–rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators ρL twist 2

ρT

kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3vector correlator

〈ρ(p)|ψ̄(z)γµψ(0)|0〉
F
= mρ fρ

h

ϕ1(y) (e∗ · n)pµ + ϕ3(y) e
∗T
µ

i

axial correlator

〈ρ(p)|ψ̄(z)γ5γµψ(0)|0〉
F
= mρ fρ i ϕA(y) εµλβδ e

∗T
λ pβ nδ

vector correlator with transverse derivative

〈ρ(p)|ψ̄(z)γµ i
←→
∂⊥α ψ(0)|0〉

F
= mρ fρ ϕ

T
1 (y) pµe

∗T
α

axial correlator with transverse derivative

〈ρ(p)|ψ̄(z)γ5γµ i
←→
∂⊥α ψ(0)|0〉

F
= mρ fρ i ϕ

T
A(y) pµ εαλβδ e

∗T
λ pβ nδ,

where y (ȳ ≡ 1− y) = momentum fraction along p ≡ p1 of the quark (antiquark) and
F
=
R

1
0

dy exp [i y p · z], with z = λn

⇒ 5 2-body DAs
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Collinear factorization
Parametrization of vacuum–to–rho-meson matrix elements: 3-body correlators

3-body non-local correlators genuine twist 3

vector correlator

〈ρ(p)|ψ̄(z1)γµgA
T
α(z2)ψ(0)|0〉

F2= mρ f
V
3 B(y1, y2) pµ e

∗T
α ,

axial correlator

〈ρ(p)|ψ̄(z1)γ5γµgA
T
α(z2)ψ(0)|0〉

F2= mρ f
A
3 iD(y1, y2) pµ εαλβδ e

∗T
λ pβ nδ,

where y1, ȳ2, y2 − y1 = quark, antiquark, gluon momentum fraction

and
F2=

1
R

0

dy1

1
R

0

dy2 exp [i y1 p · z1 + i(y2 − y1) p · z2] , with z1,2 = λn

⇒ 2 3-body DAs
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Collinear factorization
Equations of motion

Equations of motion twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3Dirac equation leads to

〈i(
→
/D (0)ψ(0))α ψ̄β(z)〉 = 0 (i

→
Dµ= i

→
∂ µ + g Aµ)

Apply the Fierz decomposition to the above 2 and 3-body correlators

− 〈ψ(x) ψ̄(z)〉 =
1

4
〈ψ̄(z)γµψ(x)〉γµ +

1

4
〈ψ̄(z)γ5γµψ(x)〉γµγ5.

⇒ 2 Equations of motion:

ȳ1 ϕ3(y1) + ȳ1 ϕA(y1) + ϕT
1 (y1) + ϕT

A(y1)

+

Z

dy2
h

ζV
3 B(y1, y2) + ζA

3 D(y1, y2)
i

= 0 and (ȳ1 ↔ y1)

In WW approximation: genuine twist 3 = 0 i.e. B = D = 0

8

<

:

ϕT
A(y) = 1

2
[(y − ȳ)ϕWW

A (y)− ϕWW
3 (y)]

ϕT
1 (y) = 1

2
[(y − ȳ)ϕWW

3 (y)− ϕWW
A (y)]
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Collinear factorization
n−independence

A minimal set of DAs

The non-perturbative correlators cannot be obtained from perturbative
QCD (!)

one should reduce them to a minimal set before using any model

this can be achieved by using an additional condition:
independence of the full amplitude with respect to the light-cone vector n
n enters 3 places:

light-cone direction of z: z = λ n
definition of ρT polarization: eT · n = 0
axial gauge: n · A = 0

⇒ we prove that 3 independent Distribution Amplitudes are needed:
7 - 2 (=nb of equations of motion) - 2 (=nb of eq. from n-ind. cond.)

φ1(y) ← 2 body twist 2 correlator
B(y1, y2) ← 3 body genuine twist 3 vector correlator
D(y1, y2) ← 3 body genuine twist 3 axial correlator
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Collinear factorization
n−independence

n−independence in practice

ρT polarization: e∗Tµ = e∗µ− pµ e
∗ ·n keeping n · p = 1

k⊥

kz

k0

n′ pn

for the full factorized amplitude:

A = H ⊗ S
dA

dn⊥µ
= 0 ,

rewrite hard terms in one single form, of 2-body type: use Ward identities
Example: hard 3-body −→ hard 2-body

tr
ˆ

H3ρ(y1, y2) p
ρ

/p
˜

B(y1, y2) =
1

y1 − y2

(tr [H2(y1) /p] − tr [H2(y2) /p])B(y1, y2) ,

(y1 − y2) pµ

y1

y2 − y1

µ

1 − y2

=

y1

1− y1

-
y2

1− y2

thus, symbolically,
dS

dn⊥µ
= 0
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Collinear factorization
n−independence

Constraints from n−independence twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

vector correlators

d

dy1
ϕT

1 (y1) = −ϕ1(y1) + ϕ3(y1)

−ζV
3

1Z

0

dy2
y2 − y1

(B(y1, y2) +B(y2, y1))

axial correlators

d

dy1
ϕT

A(y1) = ϕA(y1)− ζ
A
3

1Z

0

dy2
y2 − y1

(D(y1, y2) +D(y2, y1))
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Collinear factorization
A set of independent non-perturbative correlators

Solution twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

the set of 4 equations (2 EOM + 2 n-independence relations) can be
solved analytically

7 −→ 3 independent DAs
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Computation and results
Computation of the hard part

2-body diagrams

without derivative

twist 2 (γ∗L → ρL)

twist 3 (γ∗T → ρT )

practical trick for computing ∂⊥H : use the Ward identity

∂
pµ

=
ppp γµ

where
p

= 1
m−/p−iǫ
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Computation and results
Computation of the hard part

3-body diagrams

“abelian” type

“non-abelian” type
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Computation and results
Recall: γ∗

L → ρL impact factor

γ∗L → ρL impact factor

Φγ∗

L→ρL(k2) =
2 e g2 fρ

Q

δab

2Nc

Z

dy ϕ1(y)
k2

y ȳ Q2 + k2

pure twist 2 scaling (from ρ-factorization point of view)
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Computation and results
Results: γ∗

T → ρT impact factor

γ∗T → ρT impact factor:

Spin Non-Flip/Flip separation appears

Φγ∗

T→ρT (k2) = Φ
γ∗

T→ρT

n.f. (k2)Tn.f. + Φ
γ∗

T→ρT

f. (k2)Tf.

where

Tn.f. = −(eγ · e
∗) and Tf. =

(eγ · k)(e
∗k)

k2 +
(eγ · e

∗)

2

non-flip transitions


+→ +
− → −

flip transitions


+→ −
− → +
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Computation and results
Results: γ∗

T → ρT impact factor

pure twist 3 scaling (from ρ-factorization point of view)
Φ

γ∗
T

→ρT
n.f.

(k
2
)

= −
e g2mρfρ

2
√

2 Q2

δab

2 Nc

8

<

:

−2

Z

dy1

“

k2 + 2 Q2 y1 (1 − y1)
”

k2

y1 (1− y1)
`

k2 + Q2 y1 (1− y1)
´

2

h

(2y1 − 1) ϕ
T
1 (y1) + ϕ

T
A(y1)

i

+2

Z

dy1 dy2

h

ζ
V
3 B (y1, y2)−ζ

A
3 D (y1, y2)

i y1 (1− y1) k2

k2 + Q2 y1 (1− y1)

"

(2−Nc/CF )Q2

k2 (y1 − y2 + 1) + Q2 y1 (1− y2)

−
Nc

CF

Q2

y2k2 + Q2 y1 (y2 − y1)

#

− 2

Z

dy1 dy2

h

ζ
V
3 B (y1, y2) + ζ

A
3 D (y1, y2)

i

»

2 + Nc/CF

1 − y1

+
y1 Q2

k2 + Q2y1 (1− y1)

 

(2− Nc/CF ) y1 k2

k2 (y1 − y2 + 1) + Q2y1 (1 − y2)
− 2

!

+
Nc

CF

(y1 − y2) (1 − y2)

1 − y1

Q2

k2 (1− y1) + Q2 (y2 − y1) (1 − y2)

#)

and

Φ
γ∗

T →ρT
f.

(k
2
) = −

e g2mρfρ

2
√

2 Q2

δab

2 Nc

(

4

Z

dy1

k2 Q2

`

k2 + Q2 y1 (1 − y1)
´

2

h

ϕ
T
A(y1)− (2y1 − 1) ϕ

T
1 (y1)

i

− 4

Z

dy1 dy2

y1 k2

k2 + Q2 y1 (1 − y1)

h

ζ
A
3 D (y1, y2) (−y1 + y2 − 1) + ζ

V
3 B (y1, y2) (y1 + y2 − 1)

i

×
"

(2 −Nc/CF )Q2

k2 (y1 − y2 + 1) + Q2 y1 (1 − y2)
−

Nc

CF

Q2

y2 k2 + Q2y1 (y2 − y1)

#)
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Computation and results
Results: γ∗

T → ρT impact factor

WW limit

WW limit: keep only twist 2 + kinematical twist 3 terms (i.e B = D = 0)

The only remaining contributions come from the two-body correlators

non-flip transition

Φ
γ∗

T
→ρT

n.f.
(k

2
) =

− e mρfρ

2
√

2 Q2

δab

2 Nc

1
Z

0

dy

(

(y − ȳ)ϕT
1

W W (y) + 2 y ȳ ϕ3
W W (y) + ϕT

A
WW (y)

y ȳ

−
2 k2

“

k2 + 2 Q2 y ȳ
” “

(y − ȳ) ϕT
1

W W (y) + ϕT
A

WW (y)
”

y ȳ
`

k2 + Q2 y (1 − y)
´

2

9

=

;

which simplifies, using equation of motion:
Z

dy [(y − ȳ)ϕT
1

WW (y) + 2 y ȳ ϕ3
WW (y) + ϕT

A
WW (y)] = 0

Φ
γ∗

T
→ρT

n.f.
(k

2
) =

e mρfρ√
2 Q2

δab

2 Nc

1
Z

0

dy
2 k2

“

k2 + 2 Q2 y ȳ
”

y ȳ
`

k2 + Q2 y ȳ
´

2

h

(2 y − 1) ϕ
T
1

W W
(y) + ϕ

T
A

WW
(y)
i

.

flip transition:

Φ
γ∗

T
→ρT

n.f.
(k

2
) = −

e mρfρ√
2 Q2

δab

2 Nc

1
Z

0

2 k2 Q2

`

k2 + Q2 y ȳ
´

2

h

(1 − 2 y)ϕ
T
1

W W
(y) + ϕ

T
A

WW
(y)
i

.

26 / 36



Introduction Impact factor for exclusive processes Collinear factorization Computation and results Transversity GPDs Conclusions

Computation and results
Discussion: gauge invariance

The obtained results are gauge invariant:

Φγ∗

T→ρT → 0 when k → 0

this is straightforward in the WW limit

at the full twist 3 order:

the CF part of the abelian 3-body contribution cancels the 2-body
contribution after using the equation of motion

the Nc part of the abelian 3-body contribution cancels the 3-body
non-abelian contribution

thus γ∗

T → ρT impact factor is gauge-invariant only provided the 2 and
3-body contributions have been taken into account in a consistent way
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Computation and results
Discussion: consistence with factorization

Our results are free of end-point singularities, in both WW approximation
and full twist-3 order calculation:

the flip contribution obviously does not have any end-point singularity
because of the k2 which regulates them

the potential end-point singularity for the non-flip contribution is spurious
since ϕT

A(y), ϕT
1 (y) vanishes at y = 0, 1 as well as B(y1, y2) and D(y1, y2).

28 / 36



Introduction Impact factor for exclusive processes Collinear factorization Computation and results Transversity GPDs Conclusions

Transversity GPDs
Twist 2 GPDs

Classification of twist 2 GPDs

For quarks, one should distinguish the exchanges
without helicity flip (chiral-even Γ′ matrices): 4 chiral-even GPDs:

Hq ξ=0,t=0
−−−−−−→ PDF q, Eq, H̃q ξ=0,t=0

−−−−−−→ polarized PDFs ∆q, Ẽq

F q =
1

2

Z

dz+

2π
eixP−z+

〈p′| q̄(− 1
2
z) γ−q( 1

2
z) |p〉

˛

˛

˛

z−=0, z⊥=0

=
1

2P−

»

Hq(x, ξ, t) ū(p′)γ−u(p) + Eq(x, ξ, t) ū(p′)
i σ−α∆α

2m
u(p)

–

,

F̃ q =
1

2

Z

dz+

2π
eixP−z+

〈p′| q̄(− 1
2
z) γ−γ5 q( 1

2
z) |p〉

˛

˛

˛

z−=0, z⊥=0

=
1

2P−

»

H̃q(x, ξ, t) ū(p′)γ−γ5u(p) + Ẽq(x, ξ, t) ū(p′)
γ5 ∆−

2m
u(p)

–

.

with helicity flip ( chiral-odd Γ′ mat.): 4 chiral-odd GPDs:

H
q
T

ξ=0,t=0
−−−−−−→ quark transversity PDFs ∆T q, E

q
T , H̃

q
T , Ẽ

q
T

1

2

Z

dz+

2π
eixP−z+

〈p′| q̄(− 1
2
z) i σ−i q( 1

2
z) |p〉

˛

˛

˛

z−=0, z⊥=0

=
1

2P−
ū(p′)

»

H
q
T iσ−i + H̃

q
T

P−∆i − ∆−P i

m2
+ E

q
T

γ−∆i − ∆−γi

2m
+ Ẽ

q
T

γ−P i − P−γi

m

–
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Transversity GPDs
Twist 2 GPDs

Classification of twist 2 GPDs

analogously, for gluons:

4 gluonic GPDs without helicity flip:

Hg ξ=0,t=0
−−−−−−→ PDF x g

Eg

H̃g ξ=0,t=0
−−−−−−→ polarized PDF x∆g

Ẽg

4 gluonic GPDs with helicity flip:
H

g
T

E
g
T

H̃
g
T

Ẽ
g
T

(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity

cannot be compensated by a spin 1/2 target)
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Transversity GPDs
Spin transversity in the nucleon

What is transversity?

Tranverse spin content of the proton:
| ↑〉(x) ∼ | →〉+ | ←〉
| ↓〉(x) ∼ | →〉 − | ←〉

spin along x helicity state
An observable sensitive to helicity spin flip gives thus access to the
transversity ∆T q(x), which is very badly known (first data have recently
been obtained by COMPASS)

The transversity GPDs are completely unknown

Chirality: q±(z) ≡ 1
2
(1± γ5)q(z) with q(z) = q+(z) + q−(z)

Chiral-even: chirality conserving
q̄±(z)γµq±(−z) et q̄±(z)γµγ5q±(−z)

Chiral-odd: chirality reversing
q̄±(z) · 1 · q∓(−z), q̄±(z) · γ5 · q∓(−z) et q̄±(z)[γµ, γν ]q∓(−z)

For a massless (anti)particle, chirality = (-)helicity

Transversity is thus a chiral-odd quantity

QCD and QED are chiral even ⇒A ∼ (Ch.-odd)1 ⊗ (Ch.-even)2
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Transversity GPDs
Spin transversity in the nucleon

How to get access to transversity?

The dominant DA for ρT is of twist 2 and chiral-odd ([γµ, γν ] coupling)

Unfortunately γ∗N↑ → ρT N
′ = 0

this is true at any order in perturbation theory (i.e. corrections as powers of
αs), since this would require a transfer of 2 units of helicity from the
proton: impossible! Collins, Diehl ’00

diagrammatic argument at Born order:

γ∗

N N ′

ρT

GPD

γ∗

N N ′

ρT

GPD

vanishes: γα[γµ, γν ]γα = 0

Diehl, Gousset, Pire ’99

32 / 36



Introduction Impact factor for exclusive processes Collinear factorization Computation and results Transversity GPDs Conclusions

Transversity GPDs
Spin transversity in the nucleon

γN → π+ρ0
TN
′ gives access to transversity

Factorization à la Brodsky Lepage of γ + π → π + ρ at large s and fixed
angle (i.e. fixed ratio t′/s, u′/s)

=⇒ factorization of the amplitude for γ +N → π + ρ+N ′ at large M2
πρ

z

z̄

γ

π

π

ρ

TH

t′

s
−→

γ

TH

t′

π+ chiral-even twist 2 DA

ρ0
T chiral-odd twist 2 DA

M2
πρ

x + ξ x − ξ

N
GPDs

N ′

t ≪ M2
πρ chiral-odd twist 2 GPDa typical non-vanishing diagram:

replacements

γ

π+

ρ0
T

N N ′
Hud

T

M. El Beiyad, P. Pire, M. Segond, L. Szymanowski, S.W

Phys.Lett.B688:154-167,2010

see also, at large s, with Pomeron exchange:

R. Ivanov, B. Pire, L. Symanowski, O. Teryaev ’02

R. Enberg, B. Pire, L. Symanowski ’06

These processes with 3 body final state can give access to all GPDs:
M2

πρ plays the role of the γ∗ virtuality of usual DVCS (here in the
time-like domain) JLab, COMPASS
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Transversity GPDs
Chiral-odd GPDs beyond leading twist

Classification of higher twist chiral-odd GPDs (pion case)

Two sources of higher twist contributions for “DVCS”:

scalar (C = +)
chiral-odd

γ∗ (C = −)
or axial-vector (C = +)
both chiral-even

π π

∆ ↓ scalar (C = +)
chiral-odd

γ∗ (C = −)
or axial-vector (C = +)
both chiral-even

π π

∆ ↓

∆⊥ contributions genuine higher twist contributions:
(analogous to the ℓ⊥ for DAs) transversally polarized t−channel gluons

Introduce a set of chiral-odd GPDs up to a given twist
Write QCD equations of motion
When factorizing long/short distance dynamics, one introduces an
arbitrary light-cone vector n which enters

the gauge fixing
the ⊥-space definition

Write n−independency contraints

This should provide a set of independent GPDs, in a consistent way when
truncating at a given twist
B. Pire, L. Szymanowski, S. W., in progress
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Conclusions
1

We have performed a full up to twist 3 computation of the γ∗ → ρ impact
factor, in the t = tmin limit.

Our result respects gauge invariance.

It is free of end-point singularities
(this should be contrasted with standard collinear treatment, at moderate
s, where kT -factorization is NOT applicable: see Mankiewicz-Piller).

In this talk we relied on the Light-Cone Collinear approach
(Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev),

which is non-covariant, but very efficient for practical computations.
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Conclusions
2

Comparison with a fully covariant approach by Ball+Braun et al:
We have established the dictionary between the two approaches within a
full twist 3 treatment:

B(y1, y2) = −
V (y1, 1− y2, y2 − y1)

y2 − y1
,

D(y1, y2) = −
A(y1, 1− y2, y2 − y1)

y2 − y1

ϕ1(y) = fρ mρ φ‖(y)

ϕ3(y) = fρ mρ g
(v)(y) ,

ϕA(y) = −
1

4
fρ mρ

∂g(a)(y)

∂y

We also performed calculations of the same impact factor within the
covariant approach by Ball+Braun et al: calculations proceed in quite
different way : eg. no ϕT

1,A−DAs but Wilson line effects are important !!
We got a full agreement with our approach

The Light-Cone Collinear approach is systematic and simple. It can be
extended to any process.
e.g.: classification of chiral-odd GPDs beyond leading twist.
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