Exclusive processes beyond leading twist. Some selected examples: -meson production; chiral-odd GPDs

Samuel Wallon

Laboratoire de Physique Théorique Université Paris Sud Orsay

Fall meeting of the GDR PH-QCD:
Nucleon and nucleus structure studies with a LHC fixed-target experiment and electron-ion colliders

Orsay, October 21th 2011
I. V. Anikin, D .Yu. Ivanov, B. Pire, L. Szymanowski, S. W.

Phys. Lett. B 682 (2010) 413-418; Nucl. Phys. B 828 (2010) 1-68 (this talk)
I. V. Anikin, A. Besse, D .Yu. Ivanov, B. Pire, L. Szymanowski, S. W.

Phys. Rev. D 84 (2011) 054004 (see next talk)

- Some processes may require an inclusion of higher twist corrections for finite values of Q^{2}. This might be the case of DVCS
- This might be a formal need: see for example the QED gauge invariance of DVCS amplitude, violated by terms $\sim \Delta_{T}$ ($\Delta=$ transfered momentum) 3-body t-channel exchange solves this problem at twist 3
Anikin, Pire, Teryaev '00
- This might be an experimental requirement:
e.g.: ρ_{T}-electroproduction which is copiously produced, while vanishing at twist 2!

Our aim is to construct a consistent and efficient tool to deal with subleading twist corrections

Our studies attempt to describe exclusive processes involving the production of ρ-mesons in diffraction-type experiment. We choose $t=t_{\text {min }}$ for simplicity.

- $\gamma^{*}(q)+\gamma^{*}\left(q^{\prime}\right) \rightarrow \rho_{T}\left(p_{1}\right)+\rho\left(p_{2}\right)$ process in $e^{+} e^{-} \rightarrow e^{+} e^{-} \rho_{T}\left(p_{1}\right)+\rho\left(p_{2}\right)$ with double tagged lepton at ILC
- $\gamma^{*}(q)+P \rightarrow \rho_{T}\left(p_{1}\right)+P$ at HERA

This process was studied by H 1 and ZEUS

- the total cross-section strongly decreases with Q^{2}
- dramatic increase with $W^{2}=s_{\gamma^{*} P}$ (transition from soft to hard regime governed by Q^{2})
(from X. Janssen (H1), DIS 2008)

Polarization effects in $\gamma^{*} P \rightarrow \rho P$ at HERA

- one can experimentally measure all spin density matrix elements
- at $t=t_{\text {min }}$ one can experimentally distinguish

$$
\left\{\begin{array}{lll}
\gamma_{L}^{*} \rightarrow \rho_{L}: & \text { dominates } & \text { (twist 2 dominance) } \\
\gamma_{T}^{*} \rightarrow \rho_{T}: & \text { sizable } & \text { (twist 3) }
\end{array}\right.
$$

- S-channel helicity conservation:

$$
\left\{\begin{array}{l}
\gamma_{L}^{*} \rightarrow \rho_{L} \\
\gamma_{T}^{*} \rightarrow \rho_{T}
\end{array} \quad\left(\equiv T_{00}\right)\right.
$$

Dominate with respect to all other transitions.
Experimentally, $\gamma_{T}^{*} \rightarrow \rho_{T}$ is dominated by $\gamma_{T(-)}^{*} \rightarrow \rho_{T(-)}$ and $\gamma_{T(+)}^{*} \rightarrow \rho_{T(+)}\left(\equiv T_{11}\right)$

(from X. Janssen (H1), DIS 2008)

The processes with vector particle such as ρ-meson probe deeper into the fine features of QCD.
It deserves theoretical developpement to describe HERA data in its special kinematical range:

- large $s_{\gamma^{*} P} \Rightarrow$ small-x effects expected, within k_{t}-factorization
- large $Q^{2} \Rightarrow$ hard scale \Rightarrow perturbative approach and collinear factorization \Rightarrow the ρ can be described through its chiral even Distribution Amplitudes

$$
\begin{cases}\rho_{L} & \text { twist 2 } \\ \rho_{T} & \text { twist 3 }\end{cases}
$$

The main ingredient is the $\gamma^{*} \rightarrow \rho$ impact factor

- For ρ_{T}, special care is needed: a pure 2-body description would violate gauge invariance.
- We show that:
- Including in a consistent way all twist 3 contributions, i.e. 2-body and 3-body correlators, gives a gauge invariant impact factor
- Our treatment is free of end-point singularities and does not violates the QCD factorization

Impact factor for exclusive processes

QCD in perturbative Regge limit

- In this limit, the dynamics is dominated by gluons (dominance of spin 1 exchange in t channel)
- BFKL (and extensions: NLL, saturations effects, ...) is expected to dominate with respect to Born order at large relative rapidity.

Born order:

BFKL ladder:

Impact factor for exclusive processes

$$
\gamma^{*} \gamma^{*} \rightarrow \rho \rho \text { as an example }
$$

- Use Sudakov decomposition $k=\alpha p_{1}+\beta p_{2}+k_{\perp}\left(p_{1}^{2}=p_{2}^{2}=0,2 p_{1} \cdot p_{2}=s\right)$
- write

$$
d^{4} k=\frac{s}{2} d \alpha d \beta d^{2} k_{\perp}
$$

- t-channel gluons with non-sense polarizations $\left(\epsilon_{N S}^{u p}=\frac{2}{s} p_{2}, \epsilon_{N S}^{d o w n}=\frac{2}{s} p_{1}\right)$ dominate at large s

Impact factor for exclusive processes

k_{T} factorization

impact representation

$$
\underline{k}=\text { Eucl. } \leftrightarrow k_{\perp}=\text { Mink. }
$$

$\mathcal{M}=i s \int \frac{d^{2} \underline{k}}{(2 \pi)^{2} \underline{k}^{2}(\underline{r}-\underline{k})^{2}} \Phi^{\gamma^{*}\left(q_{1}\right) \rightarrow \rho\left(p_{1}^{\rho}\right)}(\underline{k}, \underline{r}-\underline{k}) \Phi^{\gamma^{*}\left(q_{2}\right) \rightarrow \rho\left(p_{2}^{\rho}\right)}(-\underline{k},-\underline{r}+\underline{k})$
The $\gamma_{L, T}^{*}(q) g\left(k_{1}\right) \rightarrow \rho_{L, T} g\left(k_{2}\right)$ impact factor is normalized as

$$
\Phi^{\gamma^{*} \rightarrow \rho}\left(\underline{k}^{2}\right)=e^{\gamma^{*} \mu} \frac{1}{2 s} \int \frac{d \kappa}{2 \pi} \operatorname{Disc}_{\kappa} \mathcal{S}_{\mu}^{\gamma^{*} g \rightarrow \rho g}\left(\underline{k}^{2}\right)
$$

with $\kappa=(q+k)^{2}=\beta s-Q^{2}-\underline{k}^{2}$

Gauge invariance

- QCD gauge invariance (probes are colorless) \Rightarrow impact factor should vanish when $\underline{k} \rightarrow 0$ or $\underline{r}-\underline{k} \rightarrow 0$
- In the following we will restrict ourselve to the case $t=t_{\text {min }}$, i.e. to $\underline{r}=0$

$$
\begin{aligned}
& k_{1}=\frac{\kappa+Q^{2}+\underline{k}^{2}}{s} p_{2}+k_{\perp} \\
& k_{2}=\frac{\kappa+\underline{k}^{2}}{s} p_{2}+k_{\perp}, \\
& k_{1}^{2}=k_{2}^{2}=-\underline{k}^{2}
\end{aligned}
$$

This kinematics takes into account skewedness effects along p_{2} $t=t_{\text {min }} \Rightarrow$ restriction to the transitions

$$
\left\{\begin{array}{clcl}
0 & \rightarrow & 0 & \text { (twist 2) } \\
(+ \text { or }-) & \rightarrow & (+ \text { or }-) & \text { (twist 3) }
\end{array}\right.
$$

- At twist 3 level (for $\gamma_{T}^{*} \rightarrow \rho_{T}$ transition), gauge invariance is a non trivial statement which requires 2 and 3 body correlators

Collinear factorization
 Light-Cone Collinear approach

- The impact factor can be written as

$$
\begin{aligned}
\Phi=\int d^{4} l \cdots \operatorname{tr}[H(l \cdots) & S(l \cdots)] \\
\text { hard part } & \text { soft part }
\end{aligned}
$$

- At the 2-body level:

$$
S_{q \bar{q}}(l)=\int d^{4} z e^{-i l \cdot z}\langle\rho(p)| \psi(0) \bar{\psi}(z)|0\rangle,
$$

- H and S are related by $\int d^{4} l$ and by the summation over spinor indices

Collinear factorization

1 - Momentum factorization

- Use Sudakov decomposition in the form $\left(p=p_{1}, n=2 p_{2} / s \Rightarrow p \cdot n=1\right)$

$$
\begin{array}{cccc}
l_{\mu}=y p_{\mu}+l_{\mu}^{\perp}+(l \cdot p) n_{\mu}, & y=l \cdot n \\
\text { scaling: } & 1 & 1 / Q & 1 / Q^{2}
\end{array}
$$

- Taylor expansion of the hard part $H(\ell)$ along the collinear direction p :

$$
H(\ell)=H(y p)+\left.\frac{\partial H(\ell)}{\partial \ell_{\alpha}}\right|_{\ell=u p}(\ell-y p)_{\alpha}+\ldots \quad \text { with } \quad(\ell-y p)_{\alpha} \approx \ell_{\alpha}^{\perp}
$$

- $l_{\alpha}^{\perp} \xrightarrow{\text { Fourier }}$ derivative of the soft term: $\int d^{4} z e^{-i \ell \cdot z}\langle\rho(p)| \psi(0) i \overleftrightarrow{\partial_{\alpha} \perp} \bar{\psi}(z)|0\rangle$
$\Longrightarrow \Phi=\sum$ "modified hard part (purely y-dependent)" \otimes_{y} "modified soft terms"

Collinear factorization

(2-body case)

2 - Spinorial (and color) factorization

- Use Fierz decomposition of the Dirac (and color) matrices $\psi(0) \bar{\psi}(z)$ and $\psi(0) i \overleftrightarrow{\partial_{\perp}} \bar{\psi}(z)$:

- Φ has now the simple factorized form:

$$
\Phi=\int d y\left\{\operatorname{tr}\left[H_{q \bar{q}}(y p) \Gamma\right] S_{q \bar{q}}^{\Gamma}(y)+\operatorname{tr}\left[\partial_{\perp} H_{q \bar{q}}(y p) \Gamma\right] \partial_{\perp} S_{q \bar{q}}^{\Gamma}(y)\right\}
$$

$\Gamma=\gamma^{\mu}$ and $\gamma^{\mu} \gamma^{5}$ matrices

$$
\begin{aligned}
S_{q \bar{q}}^{\Gamma}(y) & =\int \frac{d \lambda}{2 \pi} e^{-i \lambda y}\langle\rho(p)| \bar{\psi}(\lambda n) \Gamma \psi(0)|0\rangle \\
\partial_{\perp} S_{q \bar{q}}^{\Gamma}(y) & =\int \frac{d \lambda}{2 \pi} e^{-i \lambda y}\langle\rho(p)| \bar{\psi}(\lambda n) \Gamma i \overleftrightarrow{\partial_{\perp}} \psi(0)|0\rangle
\end{aligned}
$$

- choose axial gauge condition for gluons, i.e. $n \cdot A=0 \Rightarrow$ no Wilson line

Factorization of 3-body contributions

- 3-body contributions start at genuine twist 3 \Rightarrow no need for Taylor expansion
- Momentum factorization goes in the same way as for the 2-body case
- Spinorial (and color) factorization is similar:

Collinear factorization

Parametrization of vacuum-to-rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators

- vector correlator
kinematical twist 3 (WW) genuine twist 3 genuine + kinematical twist 3

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{\mu} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho}\left[\varphi_{1}(y)\left(e^{*} \cdot n\right) p_{\mu}+\varphi_{3}(y) e_{\mu}^{* T}\right]
$$

- axial correlator

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{5} \gamma_{\mu} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} i \varphi_{A}(y) \varepsilon_{\mu \lambda \beta \delta} e_{\lambda}^{* T} p_{\beta} n_{\delta}
$$

- vector correlator with transverse derivative

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{\mu} i \overleftrightarrow{\partial_{\alpha}^{\perp}} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} \varphi_{1}^{T}(y) p_{\mu} e_{\alpha}^{* T}
$$

- axial correlator with transverse derivative

$$
\langle\rho(p)| \bar{\psi}(z) \gamma_{5} \gamma_{\mu} i \stackrel{\longleftrightarrow}{\partial_{\alpha}^{\perp}} \psi(0)|0\rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} i \varphi_{A}^{T}(y) p_{\mu} \varepsilon_{\alpha \lambda \beta \delta} e_{\lambda}^{* T} p_{\beta} n_{\delta}
$$

where $y(\bar{y} \equiv 1-y)=$ momentum fraction along $p \equiv p_{1}$ of the quark (antiquark) and

$$
\stackrel{\mathcal{F}}{=} \int_{0}^{1} d y \exp [i y p \cdot z], \text { with } z=\lambda n
$$

$\Rightarrow 5$ 2-body DAs

Collinear factorization

Parametrization of vacuum-to-rho-meson matrix elements: 3-body correlators

3-body non-local correlators

- vector correlator

$$
\langle\rho(p)| \bar{\psi}\left(z_{1}\right) \gamma_{\mu} g A_{\alpha}^{T}\left(z_{2}\right) \psi(0)|0\rangle \stackrel{\mathcal{F}_{2}}{=} m_{\rho} f_{3}^{V} B\left(y_{1}, y_{2}\right) p_{\mu} e_{\alpha}^{* T}
$$

- axial correlator

$$
\langle\rho(p)| \bar{\psi}\left(z_{1}\right) \gamma_{5} \gamma_{\mu} g A_{\alpha}^{T}\left(z_{2}\right) \psi(0)|0\rangle \stackrel{\mathcal{F}_{2}}{=} m_{\rho} f_{3}^{A} i D\left(y_{1}, y_{2}\right) p_{\mu} \varepsilon_{\alpha \lambda \beta \delta} e_{\lambda}^{* T} p_{\beta} n_{\delta}
$$

where $y_{1}, \bar{y}_{2}, y_{2}-y_{1}=$ quark, antiquark, gluon momentum fraction
and $\stackrel{\mathcal{F}_{2}}{=} \int_{0}^{1} d y_{1} \int_{0}^{1} d y_{2} \exp \left[i y_{1} p \cdot z_{1}+i\left(y_{2}-y_{1}\right) p \cdot z_{2}\right]$, with $z_{1,2}=\lambda n$
$\Rightarrow 2$ 3-body DAs

Collinear factorization

Equations of motion

- Dirac equation leads to

$$
\left\langle i(\overrightarrow{D D}(0) \psi(0))_{\alpha} \bar{\psi}_{\beta}(z)\right\rangle=0 \quad\left(i \vec{D}_{\mu}=i \vec{\partial}_{\mu}+g A_{\mu}\right)
$$

- Apply the Fierz decomposition to the above 2 and 3-body correlators

$$
-\langle\psi(x) \bar{\psi}(z)\rangle=\frac{1}{4}\left\langle\bar{\psi}(z) \gamma_{\mu} \psi(x)\right\rangle \gamma_{\mu}+\frac{1}{4}\left\langle\bar{\psi}(z) \gamma_{5} \gamma_{\mu} \psi(x)\right\rangle \gamma_{\mu} \gamma_{5}
$$

- $\Rightarrow 2$ Equations of motion:

$$
\begin{aligned}
& \bar{y}_{1} \varphi_{3}\left(y_{1}\right)+\bar{y}_{1} \varphi_{A}\left(y_{1}\right)+\varphi_{1}^{T}\left(y_{1}\right)+\varphi_{A}^{T}\left(y_{1}\right) \\
& +\int d y_{2}\left[\zeta_{3}^{V} B\left(y_{1}, y_{2}\right)+\zeta_{3}^{A} D\left(y_{1}, y_{2}\right)\right]=0 \quad \text { and } \quad\left(\bar{y}_{1} \leftrightarrow y_{1}\right)
\end{aligned}
$$

- In WW approximation: genuine twist $3=0$ i.e. $B=D=0$

$$
\left\{\begin{array}{l}
\varphi_{A}^{T}(y)=\frac{1}{2}\left[(y-\bar{y}) \varphi_{A}^{W W}(y)-\varphi_{3}^{W W}(y)\right] \\
\varphi_{1}^{T}(y)=\frac{1}{2}\left[(y-\bar{y}) \varphi_{3}^{W W}(y)-\varphi_{A}^{W W}(y)\right]
\end{array}\right.
$$

A minimal set of DAs

- The non-perturbative correlators cannot be obtained from perturbative QCD (!)
- one should reduce them to a minimal set before using any model
- this can be achieved by using an additional condition: independence of the full amplitude with respect to the light-cone vector n n enters 3 places:
- light-cone direction of $z: z=\lambda n$
- definition of ρ_{T} polarization: $e_{T} \cdot n=0$
- axial gauge: $n \cdot A=0$
\Rightarrow we prove that 3 independent Distribution Amplitudes are needed:
7-2 (=nb of equations of motion) - 2 ($=\mathrm{nb}$ of eq. from n-ind. cond.)
$\phi_{1}(y) \quad \leftarrow 2$ body twist 2 correlator
$B\left(y_{1}, y_{2}\right) \leftarrow 3$ body genuine twist 3 vector correlator
$D\left(y_{1}, y_{2}\right) \leftarrow 3$ body genuine twist 3 axial correlator

Collinear factorization

n-independence
n-independence in practice

- ρ_{T} polarization: $e_{\mu}^{* T}=e_{\mu}^{*}-p_{\mu} e^{*} \cdot n \quad$ keeping $n \cdot p=1$

- for the full factorized amplitude:

$$
\mathcal{A}=H \otimes S \quad \frac{d \mathcal{A}}{d n_{\perp}{ }^{\mu}}=0
$$

- rewrite hard terms in one single form, of 2-body type: use Ward identities Example: hard 3-body \longrightarrow hard 2-body $\operatorname{tr}\left[H_{3 \rho}\left(y_{1}, y_{2}\right) p^{\rho} \not \boldsymbol{p}\right] B\left(y_{1}, y_{2}\right)=\frac{1}{y_{1}-y_{2}}\left(\operatorname{tr}\left[H_{2}\left(y_{1}\right) \boldsymbol{p}\right]-\operatorname{tr}\left[H_{2}\left(y_{2}\right) \boldsymbol{p}\right]\right) B\left(y_{1}, y_{2}\right)$,

- thus, symbolically,

$$
\frac{d S}{d n_{\perp}{ }^{\mu}}=0
$$

Collinear factorization

n-independence

Constraints from n-independence
twist 2
kinematical twist 3 (WW) genuine twist 3
genuine + kinematical twist 3

- vector correlators

$$
\begin{aligned}
& \frac{d}{d y_{1}} \varphi_{1}^{T}\left(y_{1}\right)=-\varphi_{1}\left(y_{1}\right)+\varphi_{3}\left(y_{1}\right) \\
& \quad-\zeta_{3}^{V} \int_{0}^{1} \frac{d y_{2}}{y_{2}-y_{1}}\left(B\left(y_{1}, y_{2}\right)+B\left(y_{2}, y_{1}\right)\right)
\end{aligned}
$$

- axial correlators

$$
\frac{d}{d y_{1}} \varphi_{A}^{T}\left(y_{1}\right)=\varphi_{A}\left(y_{1}\right)-\zeta_{3}^{A} \int_{0}^{1} \frac{d y_{2}}{y_{2}-y_{1}}\left(D\left(y_{1}, y_{2}\right)+D\left(y_{2}, y_{1}\right)\right)
$$

Solution

twist 2
kinematical twist 3 (WW)
genuine twist 3
genuine + kinematical twist 3

- the set of 4 equations ($2 \mathrm{EOM}+2 n$-independence relations) can be solved analytically
- $7 \longrightarrow 3$ independent DAs

Computation and results

Computation of the hard part

2-body diagrams

- without derivative

twist $2 \quad\left(\gamma_{L}^{*} \rightarrow \rho_{L}\right)$
twist $3 \quad\left(\gamma_{T}^{*} \rightarrow \rho_{T}\right)$
- practical trick for computing $\partial_{\perp} H$: use the Ward identity

Computation and results

Computation of the hard part
3-body diagrams

- "abelian" type

- "non-abelian" type

Computation and results

Recall:

$$
\begin{gathered}
\gamma_{L}^{*} \rightarrow \rho_{L} \text { impact factor } \\
\Phi^{\gamma_{L}^{*} \rightarrow \rho_{L}}\left(\underline{k}^{2}\right)=\frac{2 e g^{2} f_{\rho}}{Q} \frac{\delta^{a b}}{2 N_{c}} \int d y \varphi_{1}(y) \frac{\underline{k}^{2}}{y \bar{y} Q^{2}+\underline{k}^{2}}
\end{gathered}
$$

pure twist 2 scaling (from ρ-factorization point of view)

Computation and results

$\gamma_{T}^{*} \rightarrow \rho_{T}$ impact factor:

Spin Non-Flip/Flip separation appears

$$
\Phi^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right)=\Phi_{n . f .}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right) T_{n . f .}+\Phi_{f .}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right) T_{f .}
$$

where

$$
\begin{array}{r}
T_{n . f .}=-\left(e_{\gamma} \cdot e^{*}\right) \\
\text { non-flip transitions }\left\{\begin{array}{l}
+\rightarrow+ \\
-\rightarrow-
\end{array} \quad \text { and } \quad T_{f .}=\frac{\left(e_{\gamma} \cdot k\right)\left(e^{*} k\right)}{\underline{k}^{2}}+\frac{\left(e_{\gamma} \cdot e^{*}\right)}{2}\right. \\
\text { flip transitions }\left\{\begin{array}{l}
+\rightarrow- \\
-\rightarrow+
\end{array}\right.
\end{array}
$$

Computation and results

$$
\begin{aligned}
& \Phi_{n \cdot f .}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right) \\
& =-\frac{e g^{2} m_{\rho} f_{\rho}}{2 \sqrt{2} Q^{2}} \frac{\delta^{a b}}{2 N_{c}}\left\{-2 \int d y_{1} \frac{\left(\underline{k}^{2}+2 Q^{2} y_{1}\left(1-y_{1}\right)\right) \underline{k}^{2}}{y_{1}\left(1-y_{1}\right)\left(\underline{k}^{2}+Q^{2} y_{1}\left(1-y_{1}\right)\right)^{2}}\left[\left(2 y_{1}-1\right) \varphi_{1}^{T}\left(y_{1}\right)+\varphi_{A}^{T}\left(y_{1}\right)\right]\right. \\
& +2 \int d y_{1} d y_{2}\left[\zeta_{3}^{V} B\left(y_{1}, y_{2}\right)-\zeta_{3}^{A} D\left(y_{1}, y_{2}\right)\right] \frac{y_{1}\left(1-y_{1}\right) \underline{k}^{2}}{\underline{k}^{2}+Q^{2} y_{1}\left(1-y_{1}\right)}\left[\frac{\left(2-N_{c} / C_{F}\right) Q^{2}}{\underline{k}^{2}\left(y_{1}-y_{2}+1\right)+Q^{2} y_{1}\left(1-y_{2}\right)}\right. \\
& \left.-\frac{N_{c}}{C_{F}} \frac{Q^{2}}{y_{2} \underline{k}^{2}+Q^{2} y_{1}\left(y_{2}-y_{1}\right)}\right]-2 \int d y_{1} d y_{2}\left[\zeta_{3}^{V} B\left(y_{1}, y_{2}\right)+\zeta_{3}^{A} D\left(y_{1}, y_{2}\right)\right]\left[\frac{2+N_{c} / C_{F}}{1-y_{1}}\right. \\
& +\frac{y_{1} Q^{2}}{\underline{k}^{2}+Q^{2} y_{1}\left(1-y_{1}\right)}\left(\frac{\left.\underline{k}^{2}\left(y_{1}-y_{2}+1\right)+Q_{F}^{2}\right) y_{1} \underline{k}^{2}}{\underline{N}_{c}\left(1-y_{2}\right)}-2\right) \\
& +\frac{\left(y_{1}-y_{2}\right)\left(1-y_{2}\right)}{C_{F}} \frac{Q^{2}}{1-y_{1}} \frac{\underline{k}^{2}\left(1-y_{1}\right)+Q^{2}\left(y_{2}-y_{1}\right)\left(1-y_{2}\right)}{}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{f .}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right)=-\frac{e g^{2} m_{\rho} f_{\rho}}{2 \sqrt{2} Q^{2}} \frac{\delta^{a b}}{2 N_{c}}\left\{4 \int d y_{1} \frac{\underline{k}^{2} Q^{2}}{\left(\underline{k}^{2}+Q^{2} y_{1}\left(1-y_{1}\right)\right)^{2}}\left[\varphi_{A}^{T}\left(y_{1}\right)-\left(2 y_{1}-1\right) \varphi_{1}^{T}\left(y_{1}\right)\right]\right. \\
& \quad-4 \int d y_{1} d y_{2} \frac{\underline{k}^{2}+Q^{2} \underline{k}_{1}\left(1-y_{1}\right)}{}\left[\zeta_{3}^{A} D\left(y_{1}, y_{2}\right)\left(-y_{1}+y_{2}-1\right)+\zeta_{3}^{V} B\left(y_{1}, y_{2}\right)\left(y_{1}+y_{2}-1\right)\right] \\
& \left.\quad \times\left[\frac{\left(2-N_{c} / C_{F}\right) Q^{2}}{\underline{k}^{2}\left(y_{1}-y_{2}+1\right)+Q^{2} y_{1}\left(1-y_{2}\right)}-\frac{N_{c}}{C_{F}} \frac{Q^{2}}{y_{2} \underline{k}^{2}+Q^{2} y_{1}\left(y_{2}-y_{1}\right)}\right]\right\}
\end{aligned}
$$

Computation and results

WW limit

- WW limit: keep only twist $2+$ kinematical twist 3 terms (i.e $B=D=0$)
- The only remaining contributions come from the two-body correlators
- non-flip transition

$$
\begin{aligned}
\Phi_{n . f .}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right)= & \frac{-e m_{\rho} f_{\rho}}{2 \sqrt{2} Q^{2}} \frac{\delta^{a b}}{2 N_{c}} \int_{0}^{1} d y\left\{\frac{(y-\bar{y}) \varphi_{1}^{T W W}(y)+2 y \bar{y} \varphi_{3}^{W W}(y)+\varphi_{A}^{T W W}(y)}{y \bar{y}}\right. \\
& \left.-\frac{2 \underline{k}^{2}\left(\underline{k}^{2}+2 Q^{2} y \bar{y}\right)\left((y-\bar{y}) \varphi_{1}^{T W}{ }^{W}(y)+\varphi_{A}^{T W W}(y)\right)}{y \bar{y}\left(\underline{k}^{2}+Q^{2} y(1-y)\right)^{2}}\right\}
\end{aligned}
$$

which simplifies, using equation of motion:

$$
\begin{gathered}
\int d y\left[(y-\bar{y}) \varphi_{1}^{T W W}(y)+2 y \bar{y} \varphi_{3}^{W W}(y)+\varphi_{A}^{T W W}(y)\right]=0 \\
\Phi_{n . f .}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right)=\frac{e m_{\rho} f_{\rho}}{\sqrt{2} Q^{2}} \frac{\delta^{a b}}{2 N_{c}} \int_{0}^{1} d y \frac{2 \underline{k}^{2}\left(\underline{k}^{2}+2 Q^{2} y \bar{y}\right)}{y \bar{y}\left(\underline{k}^{2}+Q^{2} y \bar{y}\right)^{2}}\left[(2 y-1) \varphi_{1}^{T W W}(y)+\varphi_{A}^{T W W}(y)\right] .
\end{gathered}
$$

- flip transition:

$$
\Phi_{n . f .}^{\gamma_{T}^{*} \rightarrow \rho_{T}}\left(\underline{k}^{2}\right)=-\frac{e m_{\rho} f_{\rho}}{\sqrt{2} Q^{2}} \frac{\delta^{a b}}{2 N_{c}} \int_{0}^{1} \frac{2 \underline{k}^{2} Q^{2}}{\left(\underline{k}^{2}+Q^{2} y \bar{y}\right)^{2}}\left[(1-2 y) \varphi_{1}^{T W W}(y)+\varphi_{A}^{T W W}(y)\right] .
$$

- The obtained results are gauge invariant:

$$
\Phi^{\gamma_{T}^{*} \rightarrow \rho_{T}} \rightarrow 0 \quad \text { when } \quad \underline{k} \rightarrow 0
$$

- this is straightforward in the WW limit
- at the full twist 3 order:
- the C_{F} part of the abelian 3-body contribution cancels the 2-body contribution after using the equation of motion
- the N_{c} part of the abelian 3-body contribution cancels the 3-body non-abelian contribution
- thus $\gamma_{T}^{*} \rightarrow \rho_{T}$ impact factor is gauge-invariant only provided the 2 and 3-body contributions have been taken into account in a consistent way
- Our results are free of end-point singularities, in both WW approximation and full twist-3 order calculation:
- the flip contribution obviously does not have any end-point singularity because of the \underline{k}^{2} which regulates them
- the potential end-point singularity for the non-flip contribution is spurious since $\varphi_{A}^{T}(y), \varphi_{1}^{T}(y)$ vanishes at $y=0,1$ as well as $B\left(y_{1}, y_{2}\right)$ and $D\left(y_{1}, y_{2}\right)$.

Transversity GPDs

Classification of twist 2 GPDs

- For quarks, one should distinguish the exchanges
- without helicity flip (chiral-even Γ^{\prime} matrices): 4 chiral-even GPDs:
$H^{q} \xrightarrow{\xi=0, t=0}$ PDF $q, E^{q}, \tilde{H}^{q} \xrightarrow{\xi=0, t=0}$ polarized PDFs $\Delta q, \tilde{E}^{q}$

$$
\begin{aligned}
F^{q} & =\left.\frac{1}{2} \int \frac{d z^{+}}{2 \pi} e^{i x P^{-} z^{+}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) \gamma^{-} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{-}=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{-}}\left[H^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma^{-} u(p)+E^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{-\alpha} \Delta_{\alpha}}{2 m} u(p)\right] \\
\tilde{F}^{q} & =\left.\frac{1}{2} \int \frac{d z^{+}}{2 \pi} e^{i x P^{-} z^{+}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) \gamma^{-} \gamma_{5} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{-}=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{-}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma^{-} \gamma_{5} u(p)+\tilde{E}^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{\gamma_{5} \Delta^{-}}{2 m} u(p)\right] .
\end{aligned}
$$

- with helicity flip (chiral-odd Γ^{\prime} mat.): 4 chiral-odd GPDs:
$H_{T}^{q} \xrightarrow{\xi=0, t=0}$ quark transversity PDFs $\Delta_{T} q, E_{T}^{q}, \tilde{H}_{T}^{q}, \tilde{E}_{T}^{q}$

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{d z^{+}}{2 \pi} e^{i x P^{-} z^{+}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) i \sigma^{-i} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{-}=0, z_{\perp}=0} \\
& =\frac{1}{2 P^{-}} \bar{u}\left(p^{\prime}\right)\left[H_{T}^{q} i \sigma^{-i}+\tilde{H}_{T}^{q} \frac{P^{-} \Delta^{i}-\Delta^{-} P^{i}}{m^{2}}+E_{T}^{q} \frac{\gamma^{-} \Delta^{i}-\Delta^{-} \gamma^{i}}{2 m}+\tilde{E}_{T}^{q} \frac{\gamma^{-} P^{i}-P^{-} \gamma^{i}}{m}\right]
\end{aligned}
$$

Classification of twist 2 GPDs

- analogously, for gluons:
- 4 gluonic GPDs without helicity flip:
$H^{g} \xrightarrow{\xi=0, t=0}$ PDF $x g$
E^{g}
$\tilde{\tilde{H}}^{g} \xrightarrow{\xi=0, t=0}$ polarized PDF $x \Delta g$
\tilde{E}^{g}
- 4 gluonic GPDs with helicity flip:
H_{T}^{g}
E_{T}^{g}
\tilde{H}_{T}^{g}
\tilde{E}_{T}^{g}
(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity cannot be compensated by a spin $1 / 2$ target)

What is transversity?

- Tranverse spin content of the proton:

$$
\begin{array}{rcc}
|\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle+|\leftarrow\rangle \\
|\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle-|\leftarrow\rangle \\
\text { spin along } x & & \\
\text { helicity state }
\end{array}
$$

- An observable sensitive to helicity spin flip gives thus access to the transversity $\Delta_{T} q(x)$, which is very badly known (first data have recently been obtained by COMPASS)
- The transversity GPDs are completely unknown
- Chirality: $\quad q_{ \pm}(z) \equiv \frac{1}{2}\left(1 \pm \gamma^{5}\right) q(z)$ with $q(z)=q_{+}(z)+q_{-}(z)$

Chiral-even: chirality conserving
$\bar{q}_{ \pm}(z) \gamma^{\mu} q_{ \pm}(-z)$ et $\bar{q}_{ \pm}(z) \gamma^{\mu} \gamma^{5} q_{ \pm}(-z)$
Chiral-odd: chirality reversing
$\bar{q}_{ \pm}(z) \cdot 1 \cdot q_{\mp}(-z), \quad \bar{q}_{ \pm}(z) \cdot \gamma^{5} \cdot q_{\mp}(-z)$ et $\bar{q}_{ \pm}(z)\left[\gamma^{\mu}, \gamma^{\nu}\right] q_{\mp}(-z)$

- For a massless (anti)particle, chirality $=(-)$ helicity
- Transversity is thus a chiral-odd quantity
- QCD and QED are chiral even $\Rightarrow \mathcal{A} \sim(\text { Ch.-odd })_{1} \otimes(\text { Ch.-even })_{2}$

How to get access to transversity?

- The dominant DA for ρ_{T} is of twist 2 and chiral-odd ($\left[\gamma^{\mu}, \gamma^{\nu}\right]$ coupling)
- Unfortunately $\gamma^{*} N^{\uparrow} \rightarrow \rho_{T} N^{\prime}=0$
- this is true at any order in perturbation theory (i.e. corrections as powers of α_{s}), since this would require a transfer of 2 units of helicity from the proton: impossible! Collins, Diehl '00
- diagrammatic argument at Born order:

vanishes: $\gamma^{\alpha}\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{\alpha}=0$

Diehl, Gousset, Pire '99

Transversity GPDs

$$
\gamma N \rightarrow \pi^{+} \rho_{T}^{0} N^{\prime} \text { gives access to transversity }
$$

- Factorization à la Brodsky Lepage of $\gamma+\pi \rightarrow \pi+\rho$ at large s and fixed angle (i.e. fixed ratio $t^{\prime} / s, u^{\prime} / s$)
\Longrightarrow factorization of the amplitude for $\gamma+N \rightarrow \pi+\rho+N^{\prime}$ at large $M_{\pi \rho}^{2}$

- a typical non-vanishing diagram:

M. El Beiyad, P. Pire, M. Segond, L. Szymanowski, S.W

Phys.Lett.B688:154-167,2010
see also, at large s, with \mathbb{P} omeron exchange:
R. Ivanov, B. Pire, L. Symanowski, O. Teryaev '02
R. Enberg, B. Pire, L. Symanowski '06

- These processes with 3 body final state can give access to all GPDs: $M_{\pi \rho}^{2}$ plays the role of the γ^{*} virtuality of usual DVCS (here in the time-like domain) JLab, COMPASS

Classification of higher twist chiral-odd GPDs (pion case)
Two sources of higher twist contributions for "DVCS":

Δ_{\perp} contributions (analogous to the ℓ_{\perp} for DAs) transversally polarized t-channel gluons

- Introduce a set of chiral-odd GPDs up to a given twist
- Write QCD equations of motion
- When factorizing long/short distance dynamics, one introduces an arbitrary light-cone vector n which enters
- the gauge fixing
- the \perp-space definition

Write n-independency contraints
This should provide a set of independent GPDs, in a consistent way when truncating at a given twist
B. Pire, L. Szymanowski, S. W., in progress

- We have performed a full up to twist 3 computation of the $\gamma^{*} \rightarrow \rho$ impact factor, in the $t=t_{\text {min }}$ limit.
- Our result respects gauge invariance.
- It is free of end-point singularities (this should be contrasted with standard collinear treatment, at moderate s, where k_{T}-factorization is NOT applicable: see Mankiewicz-Piller).
- In this talk we relied on the Light-Cone Collinear approach (Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev), which is non-covariant, but very efficient for practical computations.
- Comparison with a fully covariant approach by Ball+Braun et al: We have established the dictionary between the two approaches within a full twist 3 treatment:

$$
\begin{aligned}
B\left(y_{1}, y_{2}\right) & =-\frac{V\left(y_{1}, 1-y_{2}, y_{2}-y_{1}\right)}{y_{2}-y_{1}} \\
D\left(y_{1}, y_{2}\right) & =-\frac{A\left(y_{1}, 1-y_{2}, y_{2}-y_{1}\right)}{y_{2}-y_{1}} \\
\varphi_{1}(y) & =f_{\rho} m_{\rho} \phi_{\|}(y) \\
\varphi_{3}(y) & =f_{\rho} m_{\rho} g^{(v)}(y), \\
\varphi_{A}(y) & =-\frac{1}{4} f_{\rho} m_{\rho} \frac{\partial g^{(a)}(y)}{\partial y}
\end{aligned}
$$

- We also performed calculations of the same impact factor within the covariant approach by Ball+Braun et al: calculations proceed in quite different way : eg. no $\varphi_{1, A}^{T}$-DAs but Wilson line effects are important !! We got a full agreement with our approach
- The Light-Cone Collinear approach is systematic and simple. It can be extended to any process. e.g.: classification of chiral-odd GPDs beyond leading twist.

