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Introduction
°

Extensions from DIS

@ DIS: inclusive process — forward amplitude (¢t = 0) (optical theorem)
(DIS: Deep Inelastic Scattering)
ex: eip — e* X at HERA

x = 1-dimensional structure

Structure Function

= Coefficient Function & Parton Distribution Function

(hard) (soft)

DVCS: exclusive process — non forward amplitude (—t < s = W?)

(DVCS: Deep Vitual Compton Scattering)

(7

Fourier transf.: ¢ <» impact parameter
(z, t) = 3-dimensional structure

Amplitude

Coefficient Function ® Generalized Parton Distribution

(hard) (soft)

Miiller et al. '91 - '94; Radyushkin '96; Ji '97
2/3a



Introduction
©000

Collinear factorization
A bit more technical: DVCS and GPDs

The two steps for factorization, in a nutshell
@ momentum factorization: light-cone vector dominance for Q — oo

. ) . pr=4(1,00,1) pi=pi=0
P1, P2 : the two light-cone directions -
p2 = %2(1,0L,-1) 2p1 P2 =8~ syxp 2 Q7
Sudakov decomposition: £ = api + fBp2 + ki
+ - 1
+- +

¥ ()

key point:
large (+) x (—) flux

Q:)oo [ dk=

=p; [dx z+¢ = short distance

(masses neglected)

[d'k S(k, k+A)H(q, k, k+A) = [dk™[dkTd’k. S(k, k+A) H(q. k™, k= +A")
@ Quantum numbers factorization (Fierz identity: spinors + color)

= M = GPD ® Hard part
Miiller et al. '91 - '94; Radyushkin '96; Ji '97 3/34
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Collinear factorization
Twist 2 GPDs

Physical interpretation for GPDs

\ e X

X+& /4 4/ EX

-1 d 0 g 1
1 1 1 1 1 X

Emission and reabsoption Emission of a quark and  Emission and reabsoption

of an antiquark emission of an antiquark of a quark
~ PDFs for antiquarks ~ meson exchange ~ PDFs for quarks
DGLAP-II region ERBL region DGLAP-I region
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Collinear factorization
Twist 2 GPDs

Classification of twist 2 GPDs

@ For quarks, one should distinguish the exchanges

@ without helicity flip (chiral-even I/ matrices)' 4 chiral-even GPDs:
£=0,t=0 £=0,t

HY 2=—"" PDF ¢, E4, HY £20420, polarized PDFs Aq, E4
dzt . -+
q — - Be ixPT z =1 — (1
F 2/ o € P'la(=32)7"a(32) ML?ZO‘H:O
1 _ B 10 A
= H(z, &,t) a(p" )y~ ulp) + Bz, &) u(p) ———u(p) | ,
2P~ 2m
- dzt . p— .+
e = 1 wP =zt g Loyl ’
2/ o € (Pla(=32)7 waz2)Ie)| __ .
1 _ ~ _ Y5 A~
= HY(z, &, t) a(p' )y~ vsulp) + Bz, &, t) u(p’) u(p) | -
2P— 2m

¢ with helicity flip ( chiral-odd I mat.): 4 chiral-odd GPDs:

HZ, £=0.6=0, quark transversity PDFs Apgq, B, f]%, E%

1 dzt izP~ 2T = 2 —1
—/—e P (=3 2)io a(h2) [p)

2 2 z7=0,z; =0
1 _ ) _ P A*— A—PpP? 'y_Ai—A_»yi _ ’Y_Pi—P_’yi
= 5p= a(p’) {H% ic”' + HF, 3 + E4 o + E4 -,
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Collinear factorization
Twist 2 GPDs

Classification of twist 2 GPDs

@ analogously, for gluons:

9 4 gluonic GPDs without helicity flip:
o £5%4=0 ppE zg
E9
F:]f] 5:Oét:(k polarized PDF x Ag
E9

@ 4 gluonic GPDs with helicity flip:

(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity
cannot be compensated by a spin 1/2 target)

6/3a
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Spin transversity in the nucleon

o

(7

What is transversity?
Tranverse spin content of the proton:

| 1) @) ~ =) )
| 1) @) ~ =) =)
spin along x helicity state

An observable sensitive to helicity spin flip gives thus access to the
transversity Arq(x), which is very badly known (first data have recently
been obtained by COMPASS)

The transversity GPDs are completely unknown

Chirality: q+(2) = (1 £+°)q(2) with q(2) = q4(2) + q-(2)
Chiral-even: chirality conserving

G+ (2)7"qx(—2) and g+ ()77 gz (—2)

Chiral-odd: chirality reversing

q(2) 1 gz (=2), Ge(2) 7" gz (—2) and G=(2)[v", 7" ]ax (—2)
For a massless (anti)particle, chirality = (-)helicity

Transversity is thus a chiral-odd quantity

QCD and QED are chiral even = A ~ (Ch.-odd); ® (Ch.-odd)2

7/34
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Spin transversity in the nucleon

How to get access to transversity?

@ The dominant DA for pr is of twist 2 and chiral-odd ([y",~"] coupling)

@ Unfortunately v* NT — pr N’ =0
o this is true at any order in perturbation theory (i.e. corrections as powers of
as), since this would require a transfer of 2 units of helicity from the
proton: impossible!
Diehl, Gousset, Pire '99; Collins, Diehl 00

o diagrammatic argument at Born order:

pr pr

vanishes: v*[y*,v"]va =0

N N’ N N’

8/3a
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Spin transversity in the nucleon

Can one circumvent this vanishing?

@ This vanishing is true only at twist 2 in electroproduction:
one may consider a final state with 3 particles
(next slide)

@ At twist 3 this process does not vanish but for consistency one needs to
consider higher twist corrections both for the meson DAs and for the GPDs
(next part of this talk: for simplicity we will consider the 7° case )

o/3a
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Spin transversity in the nucleon

AN — 7T pS N’ gives access to transversity

9 Factorization a la Brodsky Lepage of 7y 4+ 7 — m + p at large s and fixed
angle (i.e. fixed ratio t'/s,u’/s)
= factorization of the amplitude for v + N — 7 + p+ N’ at large M,Qw

v v t’
“, v, 7w+ chiral-even twist 2 DA
2
— Ty | Mz,
3 — p% chiral-odd twist 2 DA
<
™ s )
N -~ o~ N’

. Cp T M2, Chiralodd twist 2 GPD
@ a typical non-vanishing diagram:

7. T M. El Beiyad, P. Pire, M. Segond, L. Szymanowski, S.W
Phys.Lett.B688:154-167,2010
] Pt see also, at large s, with Pomeron exchange:
s R. lvanov, B. Pire, L. Symanowski, O. Teryaev ‘02
N TN

R. Enberg, B. Pire, L. Symanowski '06

9 These processes with 3 body final state can give access to all GPDs:
M2, plays the role of the v* virtuality of usual DVCS (here in the
time-like domain) JLab, COMPASS

10/34
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Beyond leading twist

Light-Cone Collinear Factorization versus Covariant Collinear Factorization

@ The Light-Cone Collinear Factorization, a self-consistent method, while
non-covariant, is very efficient for practical computations
Anikin, lvanov, Pire, Szymanowski, S.W. '09
o inspired by the inclusive case
Ellis, Furmanski, Petronzio '83; Efremov, Teryaev '84
¢ axial gauge
¢ parametrization of matrix element along a light-like prefered direction
z=An (n=2pa/s).

@ non-local correlators are defined along this prefered direction, with
contributions arising from Taylor expansion up to needed term for a given
twist order computation

@ their number is then reduced to a minimal set combining equations of
motion and n—independency condition

@ Another approach (Braun, Ball), based on non-local OPE and fully covariant
but less convenient (at least at twist 3) when practically computing
coefficient functions, can equivalently be used

@ We have established the dictionnary between these two approaches

@ This has been explicitly checked for the v — pr impact factor at twist 3
Anikin, lvanov, Pire, Szymanowski, S.W.
Nucl.Phys.B 828 (2010) 1-68; Phys.Lett.B682 (2010) 413
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Beyond leading twist : as an example
Light-Cone Collinear Factorization

@ The impact factor ®* *)=2() can be written as

o7 ) —=e(Np) /d“g... t[H(0--) s )
hard part soft part

(2-parton exchange) (3-parton exchange)

Sualls) = / a4z ¢4 (o(p) |1 (0) $(2)]0)

Sotalla ly) = / iz / 023 e~ 0 51+40°52) (5(5)1(0) g A (22)0(21)[0)

12/34
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Beyond leading twist : as an example
Light-Cone Collinear Factorization

Light-Cone Collinear Factorization

° ‘ Sudakov expansion | in the basis p ~ p,, n (»> =n? =0and p - n = 1)

by = up, + i+ (L-p)ng, u=~L-n
1 1/Q 1/Q?
? of the hard part H(¢) along the collinear direction p:
OH (¢)

H(¢)=H(up) + (0 —up)at... with (—up)ar~l:

0Ly

L=up

o 11 T2 derivative of the soft term: [ d*z e % (p(p)|1(0)i O, (2)|0)

@ Color + spinor factorization = Fierz transforms:

4 ¢ L
OB, Ty - IO oo

r r P

13 /34
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Beyond leading twist : as an example
Light-Cone Collinear Factorization

2-body non-local correlators P twis2

kmemancal twist 3 (WW)
twist 3

@ vector correlator Eemine  Hinomatical twist 3
/s * *T
(PON(O10) Zm, £, [1() (€ - m)pu + 03(v) ;"
@ axial correlator

(p(P)[P(2)757u1(0)[0) Z my friwa(y) €pnss € ps s

@ vector correlator with transverse derivative

(p(p)li(Z)%i ai (0 )|0> mp fp 1 (y) ueZT

@ axial correlator with transverse derivative

(D)D) 7570 i O (0)|0) Z 1m0y £ 05 () P Earps €X' Pa s,

where y (7 = 1 — y) = momentum fraction along p = p; of the quark (antiquark) and

z 101 dyexp[iyp - z], with z = An

= 5 2-body DAs

14/34
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Beyond leading twist : as an example
Light-Cone Collinear Factorization

3-body non-local correlators genuine twist 3

@ vector correlator

_ . X
(p(P) | (21)7ug AL (22)¥(0)[0) = my, £3 B(y1,y2) pues’
@ axial correlator

(p() [ (21)57ug AL (22)1(0)[0) 2 my f3 i D(y1, y2) P carss €x" pp s,

where y1, g2, y2 — y1 = quark, antiquark, gluon momentum fraction

1 1
and = Jdyr [dys expliyip-z1 +i(y2 —y1)p- 2z2], with z12 = An
0 0

= 2 3-body DAs

15 /34
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Beyond leading twist : as an example
Light-Cone Collinear Factorization

Minimal set of DAs

@ Number of non-perturbative quantities: a priori 7 at twist 3
(5 2-parton DA and 2 2-parton DA)

@ Non-perturbative correlators cannot be obtained perturbatively!

@ One should reduce their number to a minimal set before any use of a
model or any measure on the QCD lattice

9 Independence w.r.t the choice of the vector n defining
o the light-cone direction z: z = An
o the pr polarization vector: ep -n =0
o the axial gauge: n- A=0
@ We have proven that 3 independent Distribution Amplitudes are

necessary:
QCD equations of motion 2 equations (DAs from 9, operators eliminated)
Arbitrariness in the choice of n 2 equations

v1(y) + 2-body twist 2 correlator
B(y1, y2) < 3-body genuine twist 3 vector correlator
D(y1, y2) < 3-body genuine twist 3 axial correlator

16 /34
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Beyond leading twist : as an example
Light-Cone Collinear Factorization: n—independence

n—independence at the amplitude level

ko
n p
- . *T * * p - 1
@ pr polarization: e;” =e;, —pue"-n keeplng{ —0 ks
ki
@ for the full factorized amplitude:
dA
A=H®S =0
® dn  »

@ rewrite hard terms in one single form, of 2-body type: use Ward identities
Example: hard 3-body — hard 2-body

tr [Hsp (y1,92) p” #] By1, y2) = —— , ([ (y) Pl = o [Ha(y2) 1) By, v2)

Y1 Y1 Y2
(y1 — y2) pu = )
T)— Y2 1 jy1 1 :>92
@ thus, symbolically,
as
dny#

17 /34
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Beyond leading twist : as an example
Light-Cone Collinear Factorization: n—independence

n—independence from the operators
Variation of a Wilson line

9@ When implementing the two above generators, one should not forget the
hidden Wilson line, entering the non-local operators!

@ Wilson line [y, z]c between = and y along an arbitrary path C, defined as

y
ly,z]c = Pe expig/ dx, A" (x).

@ Variation of a Wilson line from path C' to path C’
oy, zlc =
) ! yp o dx”
~ig [ lnalolle Gun (alo]) 6a7l0) %
o o
+ig A(y) - 0z[1] [y, z]lc —igly, z]c A(z) - 62[0],
{ 0,11 — C

o) [alo) o do

o o] with z[0] = z and z[1] = y.

18/34
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Beyond leading twist : as an example
Light-Cone Collinear Factorization

n—independence from the operators
Variation of a Wilson line
@ consider now the Wilson line envolved in our non-local operators, like
D(2)T [z, —2](=2z)  with '€ {¢°7, 1, i7"}
@ For simplicity, take a straight line from —z to z: z[7] =72, 7 € [-1,1].
@ Consider an infinitesimal transformation § 27:

% {QZ’(Z)F[Z’ _Z]w(—z)} -

—(2)T]z, —2] Dy $(—2) +(2) Dy Tlz, —2]ib(—2)

1

—ig/dvvd—J(z)[z, vz]2" Gy (v2) vz, —2|b(—2),

]
— — —
with Da=04 —igAa(—2) and Da=04 +igAa(z). Balitsky, Braun '89

19/3a
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Beyond leading twist : as an example
Light-Cone Collinear Factorization

n—independence from the operators

Application to matrix elements

0

dz7

~(p(0)|$(2)T[z, —2] Dy (~2) + $(2) Dy Tlz, —2}(~2)[0)

[<p(p>|zz<z>r[z, _p(—2)(0)] =

—ig / dv v (p(p)[B(2)[z, v2]2" Gon (v2)T [0z, —2(=2)|0). (1)

[

Use light-like gauge: n- A =0
Thus

[

2"Gyy = 2700 Ay
Only the v, index contributes non-trivially

Thus (1) only involves matrix elements with the L components of the field
A, introduced before
One finally gets a set of two integral equations between DAs

(7

(7

©

20/34
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Beyond leading twist :

Light-Cone Collinear Factorization

Kinematics and factorization

Consider the process A7 — Br®°
« 0 0.0 : 0 A B
(eg. Y7 — prmow, ie. B=pm").

PE# and A=p2—pi.

7 (p1) 7°(p2)
@ Sudakov basis provided by p and n (p2 =n? =0,p-n =1):

k=(k-n)p+(k-p)n+ki.
@ In particular A = =2Ep+ (A-p)n+ AL .

@ Symmetric kinematics for p; and po:

= (1 ] 4 ==
p1 (1+8p+ are " 2
2 AZ
= 1 ’ 4 =
p2 (1-=8p+ - "t
2 A3
m2_ 21
makes P longitudinal (no L component): P =p+ (P-p)n=p-+ 17—52477,.

21/3a
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Beyond leading twist :

Light-Cone Collinear Factorization

Light-Cone Collinear Factorization

@ The p, L, n basis is natural for the twist expansion
@ To implement T'—invariance, the basis P, 1, n is more suitable

@ We only consider 2- and 3-parton correlators

22/34
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Beyond leading twist :

Light-Cone Collinear Factorization

Light-Cone Collinear Factorization

9 Loop integrations:

9 Taylor expansion of the hard part w.r.t. loop momenta ¢;
OH (¢;)
Olq

with (4; — yip)a = L+ (£-p)na
o Using [d*0; = [d"; [ dyi 5(y; — £i - n) we integrate according to

/d%:/dyiX/d(&-n)é(yi—&--n) x/d2£u x/d(&wp)

— fact. < trivial < soft-part

i —yplat-....

Li=y;p

@ Fourier transf. w.r.t. : ~
o ¢ = non-local op. with 8, (e.g. ¥ 9+v) = correlators &= (1)
@ (£-p)na = non-local op. with 8; = (9-p)n” (e.g. ¥ ) = correl. d"(1)

23/3a
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Beyond leading twist :

Light-Cone Collinear Factorization

Light-Cone Collinear Factorization

@ For consistency, we stop at order 1: the A field and the derivative should
appear in a QCD gauge invariant way, through the covariant derivative

D, =0, — igAu(z).
@ Here: number of gluons < 1 = number of derivatives < 1

@ Color + spinor factorization = Fierz transforms

24/34
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Beyond leading twist :

Light-Cone Collinear Factorization

Parametrization of the non-local correlators
2-parton (with no derivative) non-local correlators

Based on C, P, T, this leads to the following set of 4 real GPDs:

af 1
@) | | w2l = [dwemorneors
i® 21
— (PoAl = PPAT) He +img (Ponf = PPn®) Hrs —ima (An® = Afn®) Hr,
Yz HS
0
twist 2 & 4 twist 3 twist 4

25/34
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Beyond leading twist :

Light-Cone Collinear Factorization

Parametrization of the non-local correlators

2-parton (with L derivative) and 3-parton non-local correlators: structure
Based on C, P, T, this leads to the following set of 12 real GPDs:

1
f dx ei(z—&)P~z+i(z+§)P~z

(m°(p2) | (2) 003{ ia% )}w(—Z)IﬂO(m» =494

gA (y de[xLz,g] eiP #(@1+E)—iPy g +iP -z (z2—8)

T , T
; o By 8 Ty v (paaB _ pBaa ~ | T .
x[zm,r(P — Py ){ 7 }+Wr (Paf PAL)AL{ T }(tW|st3&5)
T
+imy (A‘jgi“’ Aigf’){ ?:; }—&-im7r (Panﬁ P> A"’ { } (twist 4)
: |

+im?2 (nagf_ nﬁgm) { 71155 } + imn (n A~ nﬁAa) AT { ¥ } (twist 5)

3 14¢ ! ! — 1 — —
/d [1,2,4] = / dxg/dml/dwg d(xg—x2+x1), and T = 5(81 —-9d]).
—ite D1 41

TzTETiT(xagat) and TiETi(l’l,lQ,f,t) (121,6)
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Beyond leading twist :

Light-Cone Collinear Factorization

Parametrization of the non-local correlators

2-parton (with L derivative) and 3-parton non-local correlators: and structures
Based on C, P, T, this leads to the following set of 4 real GPDs:

1
f dx ei(z—&)P~z+i(z+§)P~z

<7r°(p2)|15(Z)1{ i 9] }w(—Z)IWO(m»— -

g A (y) [ @1, 2, o] P H@1HO =Py g +iP-z (22-€)
T4
X Mg AI{ h;f } . (twist 4)
S

1
_ . vy i(z—&)P-z2+i(w+E) Pz
<w°<p2>|w<z>w’{ i9] }w(—znw%m»— I dwe

9 A (y) [ 1,2, o] eFHE1HO—iP Yo +iP 2 (22-6)
T

X mee"PAL { Hp } . (twist 4)
Tp

27/3a
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Beyond leading twist :

Light-Cone Collinear Factorization

Parametrization of the non-local correlators

2-parton (with long. derivative) and 3-parton non-local correlators: structure
Based on C, P, T, this leads to the following set of 6 real GPDs:
(O =(@-pn” and A} =(A-p)n”)

1
f dr ei(sz)P»z+i(m+§)P»z
1

7 (p2)|p(2) 7 Zb—i —2)|7%(p1)) =
(7 (p2)|9(2) {gAz(y)}iﬁ( )7 (p1))

T[‘d?’[ml,lg] eiP-z(ml+§)7iP-y zg+iP-z (xg—§)
x{imﬂ (Poa? - PPa)w { Jj\\l; } (twist 4 & 6)
4]

3 (pa B _ pBoa), v| My -
+zm,r(P n” — P’n )n { My } (twist 5)

+imd (nQAi - nBAi) n’ { j]\\jf }] , (twist 6)
13

3 14¢ ! ! — 1 — —
/d [1,2,4] = / dxg/dml/dwg d(xg—x2+x1), and )= 5(82 —-ay),
—ite D1 41

M- =M "(x,6,t) and M; = M;(x1,22,6,t) (1=1,---3). 28/34
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Beyond leading twist :

Light-Cone Collinear Factorization

Parametrization of the non-local correlators

2-parton (with long. derivative) and 3-parton non-local correlators: and structures
Based on C, P, T, this leads to the following set of 2 real GPDs:

1
<> . .
B . dx ez(z—&)P~z+z(z+§)P~z
<7r°<p2>|w<z>n{ i o }u)(—z)wr“(pl» )
g Al (y) fd3[x1 ) g] oiP2(@1+€) =Py zg+iP-z (23—€)

3 HS .
X my n“’{ Mz } . (twist 5)
For the iy® structure, we cannot define correlators with the needed parity :

<
i 0

(" (p2) 19 (2) iy { 0 AT (y)

}w(—zﬂw“(pl» =0.

20/3a
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Beyond leading twist :

Light-Cone Collinear Factorization

Minimal set of GPDs

@ Number of GPDs: a priori 28 up to twist 5

@ Two constraints:
¢ QCD equations of motion (EOM)

@ Arbitrariness of p and n

30/3a
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Beyond leading twist :

Light-Cone Collinear Factorization

Minimal set of GPDs: QCD equations of motion

Dirac equation in a covariant form (no inclusion of mass effects):

(iP)a =0 and (iP)s =0
i.e. at correlator level:
(7% (p2)| (i) (—2) ¥a(2) [7°(p1)) = 0

and

(1% (p2)| Y (—2) (i) (2) |7° (p1)) = 0.
— relations between various correlators
— 8 equations between GPDs.

31/3a
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Beyond leading twist :

Light-Cone Collinear Factorization

Minimal set of GPDs: n—independence

The implementation of n—independence is much more difficult here, in
comparison with the case of the DAs (because of £). Under progress...

32/3a



Conclusion

Conclusion

@ The transversity GPDs are difficult extract
@ In order to extract the quark transversity GPDs:

@ At twist 2 one may think of rather involved processes w.r.t. to usual DVCS
or vector meson electroproduction, with 3 instead of 2 particles in the final
state

o Another possibility is to consider vector meson electroproduction beyond
leading twist

o This requires to classify the corresponding DAs and GPDs

@ For simplicity, we considered the 7°
o In the light-cone collinear factorization framework, we introduced the
relevant matrix element for:
@ 2-partons non-local correlators, with and without transverse and longitudinal
derivatives
9 3-partons non-local correlators
Their detailled parametrization is fixed by C, P, T
This leads to the introduction of 28 real GPDs
Their symmetry properties have been obtained
Their reduction to a minimal set requires the use of
9 QCD equations of motions
@ Implementation of the n—independence constraint
The complete reduction to a minimal set is under process
o The next stage is to perform the same analysis for the nucleons and to use
it for phenomenology

¢ ¢ ¢ ¢

<

33/3a



Conclusion

SCHOOL: “Correlations between partons in nucleons”

https://indico.in2p3.fr/conferenceDisplay.py ?ovw=True& confld=9917

@ Long lectures :
@ Marco Stratmann, BNL (USA)
Partons Distribution Functions and the LHC (6h)

o Markus Diehl, DESY (Germany)
Multi Parton Interactions (6h)

o Cédric Lorcé, IPNO (France) and IFPA Liége (Belgium)
Nucleon structure (4h)

@ Raju Venugopalan, BNL and Stony Brook University (USA)
Color Glass Condensate (4h)

o Leif Lonnblad, Lund Observatory (Sweden)
Introduction to event generators physics (3h)

o Abhay Deshpande, Stony Brook University (USA)
The questions of Hadronic physics (3h)
@ Short lectures :
o Paolo Bartalini, CERN and Central China Normal University (China)
CMS and ATLAS signals for MPI processes (1.5h)

@ Sarah Porteboeuf-Houssais, LPC Clermont Ferrand (France)
ALICE signals for MPI processes (1.5h)

o David Kosower, IPhT (France)

Introduction to multi-gluons processes (1.5h)
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