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Introduction

@00

Motivations

@ One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s > —¢

@ Based on theoretical grounds, one should identify and test suitable
observables in order to test this peculiar dynamics

t
ha(M?) (M)
<— vacuum quantum
S —
number
ha(M3) hy (M)

hard scales: M7, M3 > Adop or Mi?, M5® > Adep or t > Adep
where the t—channel exchanged state is the so-called hard Pomeron
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Introduction
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How to test QCD in the perturbative Regge limit?

What kind of observable?

9 perturbation theory should be applicable:
selecting external or internal probes with transverse sizes < 1/Agcp
(hard v*, heavy meson (J/¥, T), energetic forward jets) or by choosing

large t in order to provide the hard scale.
p—0

9 governed by the "soft" perturbative dynamics of QCD \Frrfi(

m=0
and not by its collinear dynamics wﬁrrri/o =0
m=0

— select semi-hard processes with s >> p%; > A2QCD where p%,; are
typical transverse scale, all of the same order.
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Introduction
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How to test QCD in the perturbative Regge limit?

Some examples of processes

@ inclusive: DIS (HERA), diffractive DIS, total v*~4* cross-section (LEP,
ILC)

@ semi-inclusive: forward jet and 7° production in DIS, Mueller-Navelet
double jets, diffractive double jets, high pr central jet, in hadron-hadron
colliders (Tevatron, LHC)

@ exclusive: exclusive meson production in DIS, double diffractive meson
production at eTe™ colliders (ILC), ultraperipheral events at LHC
(Pomeron, @dderon)
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Introduction
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The specific case of QCD at large s

QCD in the perturbative Regge limit

@ Small values of aus (perturbation theory applies due to hard scales) can be
compensated by large In s enhancements. = resummation of
>, (as Ins)™ series (Balitski, Fadin, Kuraev, Lipatov)

T ()

~ ~ s(aslns) ~ 5 (s Ins)?

@ this results in the effective BFKL ladder

_ reggeon = "dressed gluon”

effective vertex

a_fho]fhzﬁunythznq — lImA ~ Sa]:v(O)fl
S

with ap(0) —1=Cas (C >0) Leading Log Pomeron
Balitsky, Fadin, Kuraev, Lipatov
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Introduction
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Opening the boxes: Impact representation

@ Sudakov decomposition: k; = a;p1 + Bip2 + kii (3 =p3 =0, 2p1 - p2 = s)
@ write dki = £ daidBid’kyi (&= Eud. & ki = Mink.)

up/down

@ t—channel gluons have non-sense polarizations at large s: €47/ =2py

=setan =0and [dB = & 7 (k;,r — k)
impact factor

, 2 2K
_ 18 d Eéup(k./ E—E)/ d E (I)dn’wn,(_k/ _E_‘—&l)

2m)2) K E? -
S+ico
x / do (516 (kK ,r)
271 \_So WA~
§—ioco

+— multi-Regge kinematics

= set By =0and [da, = & 7 (<k,,-r+k,)
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higher order corrections

@ Higher order corrections to BFKL kernel are known at NLL order (Lipatov
Fadin; Camici, Ciafaloni), now for arbitrary impact parameter
as Y, (as Ins)" resummation

@ impact factors are known in some cases at NLL
@ v* — 4* at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao; Balitski, Chirilli)

o forward jet production (Bartels, Colferai, Vaccaj recently: Caporale, Ivanov,
Murdaca, Papa, Perri; Chachamis, Hentschinski, Madrigal, Sabio Vera)

@ 47 — pr in the forward limit (lvanov, Kotsky, Papa)

note: for exclusive processes, some transitions may start at twist 3

@ The first computation of the v, — pr twist 3 transition at LL has been
performed only recently
I. V. Anikin, D. Y. lvanov, B. Pire, L. Szymanowski and S. W.
Phys. Lett. B 688:154-167, 2010; Nucl. Phys. B 828:1-68, 2010.

o successful phenomenological application to H1 and ZEUS data for p—meson
electroproduction
. V. Anikin, A. Besse, D. Y. Ivanov, B. Pire, L. Szymanowski and S. W.
Phys. Rev. D 84 (2011) 054004

e first dipole model suitable for saturation effects studies at twist 3
A. Besse, L. Szymanowski and S. W. Nucl. Phys. B 867 (2013) 16;
arXiv :1302.1766 [hep-ph]

see Talk by A. Besse
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MN jets at full NLLx

jets: Basics

Mueller Navelet jets

@ Consider two jets (hadron paquet within a narrow cone) separated by a
large rapidity, i.e. each of them almost fly in the direction of the hadron
“close” to it, and with very similar transverse momenta

@ in a pure LO collinear treatment, these two jets should be emitted back to
back at leading order: A¢p — 1w =0 (Ap = ¢1 — P2 = relative azimutal
angle) and k1 1=Fk.12. There is no phase space for (untagged) emission

between them

Beam axis

p(m)\L
D

T2 —

large - rapidity

| jeta (ki2, ¢2)

. zero rapidity

large + rapidity
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MN jets at full NLLx
.

jets at

fails

Mueller Navelet jets at LL BFKL

@ in LL BFKL (~ > (aslns)™),
emission between these jets
— strong decorrelation
between the relative azimutal
angle jets, incompatible
with pp Tevatron collider data

@ a collinear treatment
at next-to-leading order
(NLO) can describe the data

9 important issue:
non-conservation
of energy-momentum
along the BFKL ladder.
A LL BFKL-based
Monte Carlo combined
with e-m conservation
improves dramatically
the situation (Orr and Stirling)

jety
collinear
parton
(PDF)
rapidity gap
LL BFKL
rapidity gap

Green function

collinear
arton

P
(PDF)
T S

Multi-Regge kinematics
(LL BFKL)
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MN jets at full NLLx
.

Studies at LHC;

Mueller Navelet jets at NLL BFKL

@ up to now, the

collinear

jet; NLL jet vertex

subseries as Y (s Ins)™ (";B‘I’:’;
NLL was included rapidity gap
only in the exchanged
Pomeron state, and
not inside the jet vertices o NLL BFKL
Sabio Vera, Schwennsen rapidity gap Green function
Marquet, Royon
@ the common belief c::',:::r
was that these corrections (PDF) jety NLL jet vertex

should not be important

Quasi Multi-Regge kinematics (here for NLL
BFKL)
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Implementation
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Master formulas

kr-factorized differential cross-section

do —/d¢> do /ko a%k
dlkj,1|dlks2|dys1 dys,2 e e

koo 2 X @k, 1, —k1)
x G(ki, k2, §)

Kj2, b2,y
Gt X ®(kj2,x2, ko)

with (I)(k‘]_yz,CCJ_’mkg) = fdwg f(xQ)V(kQ,J?Q) f = PDF
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Implementation
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Master formulas

Angular coefficients

Cn = /d¢J,1 de2 cos (m(ps1 — ¢u2 —))
X /d2k1 d’ko ®(ky1, x5, —ki1) Gk, ko, ) ®(kyo,x2, ke).

@ m =0 = cross-section

do _c
dlky1|dlks2| dysa dyse 0

@ m > 0 = azimutal decorrelation

C'm
Co

(cos(mep)) = (cos (m(ps1 — ps2 — 7)) =
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Implementation
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Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

oy
@ LL BFKL eigenfunctions: E, (ki) = ﬁ;ﬁ (k)" Z e

@ decompose P on this basis

@ use the known LL eigenvalue of the BFKL equation on this basis:

w(n,v) = asxo (In], 3 + iv)
with xo(n,v) = 2¥(1) — ¥ (’y+ %) — U (1 —v+ %)

(¥(z) =T’ (2)/T(2), &s = Neas/)
@ = master formula:

A\ w(m,v)
Crm = (4—=3dm,0) /dV Com(|ksil,z51) Crn (k2] 22) (%)
. So

with  Ch (ks z5) = /dc,b,] A’k dx f(@)V(k,z)Em, (k) cos(mes)

@ at NLL, same master formula: just change w(m,v) and V
(‘although E, . are not anymore eigenfunctions)

@ one may improve the NLL BFKL kernel by imposing its compatibility with
DGLAP in the (anti)collinear limit (poles in v = 1/2 + iv plane)
Salam; Ciafaloni, Colferai

note: NLL vertices are free of y poles
13 /48



Implementation
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Numerical implementation

In practice: two codes have been developed

A Mathematica code, exploratory

D. Colferai, F. Schwennsen, L. Szymanowski, S. W.
JHEP 1012:026 (2010) 1-72 [arXiv:1002.1365 [hep-ph]]

9 jet cone-algorithm with R = 0.5

¢ ¢ ¢ ¢ @

©

MSTW 2008 PDFs (available as Mathematica packages)

pr = pur (in MSTW 2008 PDFs); we take ur = ur = v/|ks1| k2]
two-loop running coupling as(u%)

we use a v grid (with a dense sampling around 0)

we use Cuba integration routines (in practice Vegas): precision 1072 for
500.000 max points per integration

mapping |k| = |ks|tan(&n/2) for k integrations = [0, co[ — [0, 1]
although formally the results should be finite, it requires a special grouping

of the integrand in order to get stable results
= 14 minimal stable basic blocks to be evaluated numerically

rather slow code
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Implementation
ooe

Numerical implementation

A Fortran code, ~ 20 times faster

B. Ducloué, L. Szymanowski, S.W.
JHEP 05 (2013) 096 [arXiv:1207.7012 [hep-ph]]

9

9

¢ ¢ ¢ ¢ ¢ ¢

Check of our Mathematica based results

Detailled check of previous mixed studies (NLL Green's function + LL jet

vertices)

Allows for k; integration in a finite range

Stability studies (PDFs, etc...) made easier

Comparison with the recent small R study of D. Yu. Ivanov, A. Papa
Azimuthal distribution

More detailled comparison with fixed order NLO: NEW CONCLUSIONS

Problems remain with v integration for low Y
(for Y < 5755 ~4). To be fixed!

We restrict ourselves to'Y > 4.
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Implementation
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Integration over |k |

Experimental data is integrated over some range, kjmin < ks = |kyJ|

Growth of the cross section with increasing kjmax :

o (nb)

30 T

25 B b
90% OTmax
20 — —

15 - —

10 - —

0 ! ! ! ! ! ! EJmax (GeV)

40 60 80 100 120 140

= need to integrate up to kjmax ~ 60 GeV
A consistency check of stability of |k ;| integration have been made:
@ consider the simplified NLL Green's function + LL jet vertices scenario

@ the integration fkoj ~dky can be performed analytically

@ comparison with integrated results of Sabio Vera, Schwennsen is safe
16 /48



Implementation
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Integration over |k |

Energy-momentum conservation issues

@ BFKL does not preserve energy-momentum conservation

@ This violation is expected to be smaller at higher order in perturbation
theory, i.e. NLL versus LL
@ In practice: avoid to use all the available collider energy:
Y7 < cosh™? %
— A lower ks means a larger validity domain : a k; as small as possible is
preferable
@ With only a lower cut on ks, one has to integrate over regions where the
BFKL approach may not be valid anymore : k; = 60 GeV — Y ; < 3.7
@ For this reason it would be nice to have a measurement with also an upper
cut on transverse momentum, Kjmin < kJ < kymax
note: large cross-sections = narrow bining in k; is only a detector issue
@ CMS: kjmin = 35 GeV
Going down to 20 GeV would probably require a dedicated trigger
@ note that:
o ky integration reduces the Y domain between jets
@ x; integration weighted by PDFs reduces the Y domain between jets
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Implementation
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Checks: fixed R versus small R limit

Comparison between the exact R and approximated small R treatments

eg. : [ks1| =30GCeV, |kya| =35GeV 5 =7TeV

Texact ~CTapprox.

. Oexact ~Tapprox
Toxact R=.3 B R=2.5

Texact

B e A B B B B B B s S L B B B B

[P ST BRI BRI R ) 2 ool vl 1Y

7 8 9 10 6 7 8 9 10

(005 P)exact = (€05 @) approx. (005 @)exact = (€05 @)approx -
(cos @) exact R=.3 (cos Pexace R=.5
04 T T T T T T 04 T T T T T T
02 |- m 02 |-
o= = o _— ]
02 — 02 —
Py I . I . I 1Y Py I . | . | 1Y

9 10 6 7 8 9

: 7 >
small R approximation: see D. Yu. Ivanov, A. Papa

s
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Results: symmetric configuration (Jk;i min| = [kJ.2 min| = 35 GeV)

Conb] = &

10000

1000

100

10

0.001
4

Cross-section

pure LL
LL vertex + NLL Green fun.
LL vertex + NLL resum. Green fun.
NLL vertex + NLL Green fun.
NLL vertex + NLL resum. Green fun.

5

6 7 8

9

Results
©000000000000000000

VE=TTeV

for typical CMS bins:
35GeV < |ky1| < 60 GeV
35GeV < k2| < 60GeV

0<Yr <47
0<Ys <47

Y

error bands = errors due to the Monte Carlo integration (2% to 5%)

NLL vertex correction very sizeable ~ NLL Green's function effects
Energy-momentum conservation not satisfied by BFKL-like approaches =

validity restricted to Y; < cosh™! % Y =YVi+Yo<x84forz~1/3
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Results
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Cross-section: stability with respect to so and ur = pur changes
(full NLL approach)

Aopin
Obin
25r T T T T ]
L wE = pE /2 ]
Py wE = 2up b
- /30 = v/50/2 7
F V50 = 2/50 E
15 -
1E =
05 -
ok 3
os L I I I I ]
4 5 6 7 8

35GeV < k1| < 60GeV
35GeV < |kja| < 60GeV

0<Y) <4.7
0< Y <4.7
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Results
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Cross-section: PDF errors
Relative variation of the cross section: other PDF sets versus MSTW 2008
(full NLL approach)

Ao’bm
Obin
ST T T T T T ]
0.4 - ——— ABKMO9 —
L —— cT10 d
03 |- —— HERAPDF 15 ]
l  —— NNPDF2.1 E 35GeV < |ky,1| < 60 GeV
0.2 [~ —
L i 35GeV < k2| < 60GeV
0.1 [~ —
0 — —
\/ 0<Y: <47
ol 7 0<Ys <47
02+ —
03 | —
04 —
o5 P U R N B v
4 5 6 7 8 9

(very similar values for the LL computation)
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos ¢)

35GeV < k1| < 60GeV
35GeV < k2| < 60GeV

0<Y) <4.7
0<Ys <4.7
———— LL vertex + NLL Green fun>
LL vertex + NLL resum. Green fun.
——— NLL vertex + NLL Green fun.
—— NLL vertex + NLL resum. Green fun.
o | | | | | vy

4 5 6 7 8 9

@ LL — NLL vertices change results dramatically: (cos ) now flat and large
@ The (anti)collinear resummation effects are not very sizable at full NLL
this is a good sign of stability of this full NLL-BFKL treatment

22/48



Results
0000®00000000000000

Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos ¢):
more on the (anti)collinear resummation effects

|k‘],1‘ = |k‘],2‘ = 35 GeV 0< Y1,Y> < 4.7

l“

\

{

|

{

|

|

|

|

§
——

T T T

pure LL pure LL

LL vertices + NLL Green's fun. LL vertices + NLL Green's fun.

LL vertices + NLL resum. (n = 0) Green's fun. LL vertices + NLL resum. (all n) Green's fun.
NLL vertices + NLL Green's fun. NLL vertices + NLL Green's fun.

NLL vertices + NLL resum. (n = 0) Green's fun. NLL vertices + NLL resum. (all n) Green’s fun.
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos ¢): PDF errors
Relative variation of (cos¢): other PDF sets versus MSTW 2008
(full NLL approach)

A{cos )
{cos )
) I T I T I T I T I
0.04 - —— ABKMO09 .
— CT10
I —— HERAPDF 15 -
—— NNPDF 2.1
0.02 |- 35GeV < k1| < 60GeV
L g 35GeV < |kj2| < 60GeV
0 -
L 0<YT <47
-0.02 — 0<Ys <4.7
-0.04 — -
L 1 L 1 L 1 L 1 L 1 Y
4 5 6 7 8 9

(cos ) is much less sensitive to the PDFs than the cross section
(at LL (cos ) does not depend on the PDFs at all)
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos ¢):
stability with respect to so and ur = ur

(full NLL approach)

35GeV < k1| < 60GeV
35GeV < |kja| < 60 GeV

06 L] 0<Yi<4T
L Ll o<y <4
04 — =
——— NLL vertex + NLL Green fun.
o wE o opr/2 T
02 | e e 20k .
R e Lk
L V30 = 24/30 i
0 | | | | | %
4 5 6 7 8 9
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos ¢):

comparison of our full NLL prediction with CMS data

{cos )
12 T T T T I
35GeV < [kj1| < 60 GeV
35GeV < k2| < 60GeV
0< YT <47
0< Y <4.7
data from
I ._ CMS-PAS-FSQ-12-002,
04— v NLL vertex + NLL Green fun. “1  presented at DIS 2013
. ©pE = pp/2
r g —y 2[R ]
o2 v o v/ -
- V50 = 24/30
i » CMS g
0 l l l L L Y
4 5 6 7 8 9
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos2y)

NLL vertex + NLL Green fun.
B NLL vertex 4+ NLL resum. Green fun.

—= = (cos2¢p)
12 | | | | |
- pure LL ——
LL vertex + NLL Green fun, ———
1 LL vertex + NLL resum. Green fun. -

35GeV < k1| < 60GeV
35GeV < k2| < 60GeV

0<Y) <4.7
0<Ys <4.7

| | | | %

4 5 6 7 8 9

9@ LL — NLL vertices change results dramatically

@ The (anti)collinear resummation effects are not very sizable at full NLL
this is a good sign of stability of this full NLL-BFKL treatment
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos 2¢):
stability with respect to so and ur = ur

(full NLL approach)

35GeV < k1| < 60GeV
35GeV < |kja| < 60 GeV

0<Y) <4.7
0<Ys <4.7
NLL vertex + NLL Green fun. S
I pE = pr/2 h
02 | e e 20k .
A Vo v
L V30 = 24/30 i
0 | | | | | %
4 5 6 7 8 9
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos 2¢):

comparison of our full NLL prediction with CMS data

(cos 2¢)
12 T T T T T
o NLL vertex + NLL Green fun. -------- e
WE = )2 e 35GeV < k1| < 60GeV
1 HE = 2pup T
V50 = /50/2 e 35 GeV < ‘kjyzl < 60 GeV
g V50 = 2./50 1
0<Y <47
0<Ys <4.7
data from

CMS-PAS-FSQ-12-002,
L "]  presented at DIS 2013

0.2 —
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos 2¢)/(cos ¢)

(cos 2¢p) /{cos )
12 T T T T T

35GeV < |kj1| < 60 GeV
35GeV < k2| < 60GeV

0< Y <47
0<Ysy <47
pure LL
B LL vertex + NLL Green fun. T
02 LL vertex + NLL resum. Green fun. 1
: NLL vertex + NLL Green fun.
- NLL vertex + NLL resum. Green fun. .
o | | | | | %

4 5 6 7 8 9
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation: PDF errors

Relative variation of % other PDF sets versus MSTW 2008

(full NLL approach)

A((cos 2¢) /{cos ¢))
(cos 2¢)/ (cos @)

L
0.04 — —— ABKMO09 —
— CT10
I —— HERAPDF 1.5 g
—— NNPDF 2.1
0.02 |- — k1| = k2| = 35GeV
- g 0<Yy <47
°oE ﬁ———~\\\\\\“\\\; 0< Yy <47
-0.02 —
-0.04 — -
P R I R R Y
4 5 6 7 8 9

(cos 2¢) /{cos ) is much less sensitive to the PDFs than the cross section
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

(cos 2¢) (cos o)

1.2

0.4

0.2

0

Azimuthal correlation (cos 2¢)/(cos ¢) :
stability with respect to so and ur = ur

(full NLL approach)

35GeV < k1| < 60GeV
35GeV < |kja| < 60GeV

0<Y <4.7
0< Yy <4.7
——— NLL vertex + NLL Green fun.
I pE = pr/2 1
| HE = 2pF -
VAT - /35/2
L V30 = 2+/30 i
| | | | | v
4 5 6 7 8 9

Very good stability in the range 5 <Y < 8
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal correlation (cos 2¢)/(cos ¢) :
comparison of our full NLL prediction with CMS data

(cos 26}/ (cos o)
12 | | | | |
L E 35GeV < k1| < 60GeV
1 - 35GeV < |kyj,2| < 60GeV
0<Y <47
0<Ys <4.7
data from
CMS-PAS-FSQ-12-002,
04 — NLL vertex + NLL Green fun. — presented at DIS 2013
HE = /2
[ e g — 2pp T
02 b Tt VB Vso/2 -
: V50 = 24/50
o L] CcMs i
0 | | | | | Y
4 5 6 7 8 9

Very good stability in the range 5 <Y < 8
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Results: symmetric configuration (|k, 1 min|

Results
000000000000000e000

35GeV) /5 =7TeV

|kJ.2 min‘

Azimuthal correlation (cos 3p) and (cos 3¢p)/(cos 2¢) :
predictions and comparison with CMS data

{cos 3p) {cos 3p)
2 T T T T 2 T T T
pure LL 1 t NLL vertex + NLL Green fun. - -4
LL vertex + NLL Green fun, —— = ur /2
1 LL vertex + NLL resum. Green fun. = 1= BE > 20 —
NLL vertex + NLL Green fun. — VAT o VRo/2
NLL vertex + NLL resum. Green fun. 1 r Vo = 250 1
08 — 08 [ Ms o
06 —
04 [ig = |
02 .
Yy o | | | | | y
4 5 6 7 8 9
(cos 3) /(cos 2¢)
12 ‘ 12 T
1 — 1 —
08— —
06 (— D B e
04— NLL vertex + NLL Green fun T
pure LL ir — /2
e+ ML Gren un 1 F e e 1
LL vertex + NLL resum. Green fun B L iy |
02 NLL vertex + NLL Green fun 02 vie Ttz
NLL vertex 4 NLL resum. Green fun 1 L oo ]
o | | | | o | | |
4 5 6 7 8 4 5 7 8
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal distribution

Computing (cos(ng)) up to large values of n gives access to the angular
distribution

1do 1 =
-5 = 5 {1 +QZCOS (n¢) (cos (n¢)>}

n=1

This is a quantity accessible at experiments like ATLAS and CMS
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Results: symmetric configuration (Jk;1 min| = |2 min| = 35GeV) /5 =7 TeV

Azimuthal distribution

0 |
3 2 1 o 1 2 3

LL vert. + NLL resum. Green’s fun.

-t T =k
12 . vEs 35GeV < |ky1| < 60GeV
OF A ] 35GeV < |kya| < 60 GeV
N
el y \ 1 0< Y <47
0ol ] 0< Y <47
i 1 ! I 1 I 4 .,
3 2 T o T 2 3
NLL vert. + NLL Green’s fun. NLL vert. + NLL resum. Green’s fun.

Full NLL treatment predicts :

@ Less decorrelation for the same Y

@ Slower decorrelation with increasing Y
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Results: symmetric configuration (Jk;1 min| = [KJ2 min| = 35GeV) /5 =7 TeV

Azimuthal distribution: stability with respect to so and ur = pr

1do 1do 1do
7z 73 7ds
T T T T T T T T T T T T T
L4 pure LL — ] L4 LL vertices + NLL Green's fun. — 141~ LL vert. + NLL resum. Green's fun. —
I Hv'*lzt‘r"2 r HE 2 tr,r«u;‘rll 1
2 fsa' s on2 1¥r o' /o0 1T fs0 o) ]
r MRV r MoRbh, VRIIH 1
1 B 1 B 1 B
08| - osf - osp B
s 4 e 4 e ]
sl sl - ol // \ i
ol , ;”// "t \ ]
e - . Pt ) e
N gl S— o =
1 I I I I I I I I I I I 1 I I I I I I
3 2 1 o 1 2 3 ¢ 3 2 1 o 1 2 $ a3 2 1 0 1 2 3 P
pure LL LL vertices + NLL Green’s fun. LL vert. + NLL resum. Green’s fun.
1do 1do
7de 7
T T T T T T T T T T T T
- NLL vert. + NLL Green's fun. — —— 7] 417 NLL vert. + NLL resum. Green's fun — ]
2L 71::’5,’1 1 L ij: ] 35GeV < |kj,1| < 60GeV
s Vo = ¥ b L Vo = 2k 35GeV < |kyj 2| < 60GeV
s [ T
06 |- - osf 0<Y; <4.7
0al 4 el 0<Ys <47
oz 4 o integrating on the bin:
‘ I 1 i i 6<Y =Y1+Y2<94
3 2 1 3 1 2 3¢ 3 2 1
NLL vert. + NLL Green’s fun. NLL vert. + NLL resum. Green’s fun.

The predicted ¢ distribution within full NLL treatment is stable
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Results

Results: asymmetric configuration (Jk1 min| = 35GeV, |KJ.2 min| = 50 GeV)

Vs =T TeV

Cross-section: fixed order NLO versus BFKL

o [nb]
10000 ¢ | | | T —
1000 ¢~ -]
for typical CMS bins:
100 T 35GeV < |kya| < 60GeV
10 — 50 GeV < ‘kJ’Ql < 60 GeV
1 -
o1 0< Y <4.7
' 1 0< Yy <4.7
0.01 I —— purell ]
——— LL vertex + NLL Green fun.
0.001 I —— LL vertex + NLL resum. Green fun.
r ——— NLL vertex + NLL Green fun.
NLL vertex + NLL resum. Green fun.
0.0001 =, pijet = fixed order NLO
1e-05 | | | | | Y
4 5 6 7 8 9

Such an asymmetric configuration is required by fixed order approaches, which
are unstable for symmetric configurations.

dots = based on the fixed order NLO parton generator Dijet (thanks to M. Fontannaz)
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Results

Results: asymmetric config. (Jkj.1 min| = 35GeV, K2 min| = 50GeV) /5 =

Cross-section: fixed order NLO versus BFKL NLL
Including uncertainties

o [nb]
10000 - | | | | |

1000 _— . E for typical CMS bins:

. 35GeV < k1| < 60GeV
| 50 GeV < |kyj,2| < 60 GeV

0<Y <4.7
T 0<Ys <4.7
001 = NLL vertex + NLL Green fun. SR
""" HF —> MI"/2
0.001 |— HF = 21F
R V50 = /50/2
— V50 = 24/50
0.0001 . Dijet = fixed order NLO
1e-05 | | | | [ R Ve
4 5 6 7 8 9

@ Putting (almost) the same scale, exactly the same cuts, we get a
noticeable difference between fixed order NLO and NLL BFKL for
4.5 <Y < 8.5: oNLO > ONLL BFKL

@ This result is rather stable w.r.t so and p choices. 5o a8



Results

Results: asymmetric config. (Jkj.1 min| = 35GeV, K2 min| = 50GeV) /5 =

for typical CMS bins:
35GeV < |ky1| < 60 GeV
50 GeV < |kj2| < 60GeV

0< Y <4.7
0< Yy <47
LL vertex + NLL resum—Green fun. T .
0.2 NLL vertex + NLL Green fun:
NLL vertex + NLL resum. Green fun.
r . Dijet = fixed order NLO
0 | | | | | %

4 5 6 7 8 9
dots = based on the fixed order NLO parton generator Dijet (thanks to M. Fontannaz)
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Results

Results: asymmetric config. (Jkj.1 min| = 35GeV, K2 min| = 50GeV) /5 =

Azimuthal correlation (cos ¢): fixed order NLO versus NLL BFKL
Including uncertainties

for typical CMS bins:
35GeV < k1| < 60GeV
50 GeV < |ky2| < 60 GeV

0<Y <4.7
B ] 0<Ys <4.7
0.4 |- ——  NLL vertex + NLL Green fun. L
""" HE — pF/2 .
B BF = 2pF 7
o2l V30 = /50/2 ]
- V50 — 24/50 :
- . Dijet = fixed order NLO M
0 | | | | | Y
4 5 6 7 8 9

@ Putting (almost) the same scale, exactly the same cuts, we get a
difference between fixed order NLO and NLL BFKL for 4.5 <Y < 8.5
@ This difference is washed-out because of sy and i dependency:

(cos p)NLO ~ {(COS P)NLL BFKL o1 )as



Results

Results: asymmetric config. (Jkj.1 min| = 35GeV, K2 min| = 50GeV) /5 =

Azimuthal correlation (cos2¢): fixed order NLO versus BFKL

(cos 2¢)
12 | | | | |
- pure LL —— |
LL vertex + NLL Green fun, ———
1+ LL vertex + NLL resum. Green fun. ——— —| for typica| CMS bins:
NLL vertex + NLL Green fun. ——
r NLL vertex + NLL resum. Green fun. 1 35GeV < ‘kJ,ll < 60 GeV
08 Dijet = fixed order NLO . | 50 GeV < ‘k.],2| < 60 GeV
0< Y <4.7
0< Yy <47
0 Y
4 5 6 7 8 9

dots = based on the fixed order NLO parton generator Dijet (thanks to M. Fontannaz)
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Results

Results: asymmetric config. (/%1 minl

35GeV, [KJ2 min| = 50GeV) /s

Azimuthal correlation (cos2¢): fixed order NLO versus NLL BFKL
Including uncertainties

(cos2¢)

12

_ for typical CMS bins:

i 35GeV < k1| < 60GeV

08 50GeV < |ky2| < 60 GeV
e . 0< Y1 <47
""" 0<Ys <47

0.4

NLL vertex + NLL Green fun.

""" nE = pr/2
B HE = 2uF
02l VA > VA2 K
: V3T > 230
- . Dijet = fixed order NLO B
o | | | | v
4 5 6 7 8

@ Putting (almost) the same scale, exactly the same cuts, we get a
difference between fixed order NLO and NLL BFKL for 4.5 <Y < 8.5
@ This difference is washed-out because of sy and i dependency:

<C()S 2§9>I\'L() ~ <(3()S 2‘3«9>1\'LL BFKL

43/48



Results

Results: asymmetric config. (Jkj.1 min| = 35GeV, K2 min| = 50GeV) /5 =

Azimuthal correlation (cos 2¢p)/(cos ¢): fixed order NLO versus BFKL

(cos 2¢)/ (cos o)
1.2

1 - for typical CMS bins:
L 1 35GeV < |kya1| < 60 GeV
50 GeV < |kj2| < 60GeV

0< Y <4.7
0<Yy <47
0.4 —— purelLL
| ——— LL vertex + NLL Green fun.
— LL vertex + NLL resum. Green fun.
02 - — NLL vertex + NLL Green fun. _
NLL vertex + NLL resum. Green fun.
- . Dijet = fixed order NLO -
o | | | | | vy

4 5 6 7 8 9
dots = based on the fixed order NLO parton generator Dijet (thanks to M. Fontannaz)
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Results

Results: asymmetric config. (/%1 minl

35GeV, [KJ2 min| = 50GeV) /s

Azimuthal correlation (cos 2¢p)/(cos ¢): fixed order NLO versus NLL BFKL
Including uncertainties
(cos 2¢) /(cos p)

L2 | | | | T

for typical CMS bins:
35GeV < |ky1| < 60 GeV
50 GeV < |kj2| < 60GeV

0< YT <4.7
0< Y <4.7
04 — NLL vertex + NLL Green fun.
""" HF = UF /2
B BE = 2up
02f T Vi = Eo/2
- V5o~ 2y/50
n . Dijet = fixed order NLO
0 | | | | | %
4 5 6 7 8 9
@ fixed order NLO and NLL BFKL differ for 4.5 <Y < 8
(cos2p)nLo _ (COS2¢)NLL BFKL

{cos p)NLO (cos @) NLL BFKL

@ This result is rather stable w.r.t so and p choices. 45 /48



Results

Results: asymmetric config. (Jkj.1 min| = 35GeV, K2 min| = 50GeV) /5 =

Azimuthal correlation (cos 3¢p)/(cos 2¢): fixed order NLO versus BFKL

(cos 3¢p) /(cos 2¢)
12

1 - for typical CMS bins:
1 35GeV < |kya1| < 60 GeV
50 GeV < |kj2| < 60GeV

0< Y <4.7
0<Yy <47
04 = __ pure LL
| ——— LL vertex + NLL Green fun. i
— LL vertex + NLL resum. Green fun.
02 - — NLL vertex + NLL Green fun. _
NLL vertex + NLL resum. Green fun.
- . Dijet = fixed order NLO -
o | | | | | vy

4 5 6 7 8 9
dots = based on the fixed order NLO parton generator Dijet (thanks to M. Fontannaz)
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Results

Results: asymmetric config. (|k1 min| = 35GeV, k2 min| = 50GeV) /s

Azimuthal correlation (cos 3¢p)/(cos 2¢): fixed order NLO versus BFKL
Including uncertainties
(cos 3p) /{cos 2¢p)
12 | | I

1 - for typical CMS bins:
i 35GeV < k1| < 60GeV
50 GeV < |kj2| < 60GeV

0< Y <4.7
0< Yy <4.7
04 - NLL vertex + NLL Green fun. —
""" wE = pF /2
B nE = 2up T
02 b V50 = /50/2 _]
i VS0 = 2/s0
n . Dijet = fixed order NLO .
0 ! ! ! ! ! v
4 5 6 7 8 9

o fixed order NLO and NLL BFKL differ for 5.5 <Y < 8
(cos3p)nLo _ (COS 3P)NLL BFKL
(cos2p)NLO ~ (COS 2¢) NLL BFKL

@ This result is rather stable w.r.t so and p choices.
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Conclusion

Conclusion

@ We have deepen our complete NLL analysis of Mueller-Navelet jets
@ The effect of NLL jets corrections is dramatic, similar to the NLL Green
function corrections
@ For the cross-section:
o makes prediction much more stable with respect to variation of parameters
(factorization scale, scale sg entering the rapidity definition, PDFs)
o sizeably below fixed order NLO
@ Surprisingly small decorrelation effect:
o very close to fixed order NLO for {(cos ¢) and {cos 2¢)
o very flat in rapidity Y
o still rather dependent on these parameters
9 Collinear improved NLL BFKL and pure NLL leads to very similar result

when summing over n
9 The ¢ distr. is very strongly peaked around 0 and stable w.r.t. Y
@ For (cos2¢p)/(cos ¢) and (cos3y)/(cos 2¢) the differences between NLL
BFKL and fixed order NLO are sizable, and stable w.r.t. to scale choices
@ The predictions for these ratios are consistent with the recent CMS data
@ VERY FRESH NEWS: an unnatural scale like ur = pr = 8y/|ks,1| k2|
provides a rather good description for all {cos ¢), (cos2y), (cos 3¢p), all
ratios (cos 2¢p) /{cos @), (cos 3p)/(cos 2¢) and for the azimuthal
distribution 142 for 5 <Y <8 [BACKUP]

de
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[ JeJe}

Results with an "unnatural” scale up

Our prediction at NLL BFKL versus CMS data: (cosny)

{cos @) {cos 2¢p)
12 12 T
1 o A 1 -
08 |m e - 08 | -
06 |- e 06 =, -
04 - 04 =
02 | —— NLL vertex + NLL Green fun. i 02| —— NLLvertex + NLL Green fun i
———————— I e wE o Bup
Foos cws B Foo= cws B
o | | | | | y o | | | | | y
4 5 6 7 8 9 4 5 6 7 8 9
(cos 3¢)

L NLL vertex + NLL Green fun
ne = 8pp
1 cms " T

08 [ —
06 - —

04|y

02
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[e] e}

Results with an "unnatural” scale up

Our prediction at NLL BFKL versus CMS data:
(cos 2¢)/(cos ) and (cos 3¢) /(cos 2¢)

(cos 2¢) /{cos ) {cos 3p) /(cos 2¢)
12 : 12 :
1+ - 1 -
08— - 08 -
06 06 S
04 - 04 -
02 NLL vertex + NLL Green fun , 02 NLL vertex + NLL Green fun 4
e o 8pir S
Foo* aws B " cms B
0 | | | | | v o | | | | | y
4 5 6 7 8 9 4 5 6 7 8 9
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[ele] J

Results with an "unnatural” scale up

Our prediction at NLL BFKL versus CMS data: 292

1do 1ldo
o dp o dp
\ \ \ \ \ 10 \ \ \ \ \
12 — | |
N NLL vertex + NLL Green fun. i NLL vertex + NLL Green fun.
"""" wr = 8ur s pp = 8uR
1p . CcMs - . CcMs
1k —
0.1 _
= " 7
-
© 001 ‘ ‘ LI

0 0.5 1 15 2 25 3

Here Y = Y1 + Y5 is integrated over the range [6,9.4] with 0 < Y; < 4.7.
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MN jets within MPI

Can Mueller-Navelet jets be a manifestation of multiparton interactions?

MN jets in the single partonic model MN jets in MPI
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MN jets within MPI

Can Mueller-Navelet jets be a manifestation of multiparton interactions?

single P ladder two PP ladders interferences

scaling: s°* (?7) s> 7?

@ The twist counting is not easy for MPI kinds of contributions at small x

9 k11,2 are not integrated = MPI may be competitive, and enhanced by
small-x resummation

@ Interference terms are not governed by BJKP (this is not a fully

interacting 3-reggeons system) (for BJKP, ap < 1 = suppressed) o5/ a8



MN jets within MPI

®00000

Jet vertex: versus

k,k’ = Euclidian two dimensional vectors

LL jet vertex:

NLL jet vertex:
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MN jets within MPI
0®0000

Jet vertex: jet algorithms

Jet algorithms

@ a jet algorithm should be IR safe, both for soft and collinear singularities

@ the most common jet algorithm are:

o k¢ algorithms (IR safe but time consuming for multiple jets configurations)

o cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis,
Kunszt, Soper)
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MN jets within MPI
00@000

Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

@ Should partons (|p1], ¢1,y1) and (p2], @2, y2) combined in a single jet?
|p:i| =transverse energy deposit in the calorimeter cell ¢ of parameter
Q= (yi, ¢i) iny — ¢ plane

@ define transverse energy of the jet: p; = |p1| + |p2|

9 jet axis:

L= IP1ly1 + [P2| y2

Py
Qe
_ [p1] ¢1 + |p2| ¢2

pJ

¥

parton; (Q1,|p1])

cone axis (Q¢) Q= (yi, ¢:) iny — ¢ plane
partony (22, [p2])

If distances |Q; — Q|? = (yi —ye)? + (¢ — de)? < R (i =1 and i = 2)

— partons 1 and 2 are in the same cone 2,
Ip1] + |p2|

combined condition: [ — Q| < ——————
maz(pi], [pa])
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Jet vertex: versus and jet algorithms

LL jet vertex and cone algorithm

k,k’ = Euclidian two dimensional vectors

Vo

5P (kus) =5 (1= 21) k6P (k — k)
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MN jets within MPI
000000

Jet vertex: versus and jet algorithms

NLL jet vertex and cone algorithm
k, k’ = Euclidian two dimensional vectors

S((]S,cone) (k/7 k — k/7 z2; CC) _

5P (k,2) © ([%R] At Mﬂ)

2 / k—K' | +]K| 2
+ S'(] >(k —k',22)© <[Ay2 + A¢%] — [chone] )

’ / 2
k-¥,oz + 8P (K, 2(1-2) O ([Ayz + A¢7] — | ey Feone ) ’

’
k', z(1 - z2) 58/ 48



MN jets within MPI
00000e

Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

@ UV sector:

o the NLL impact factor contains UV divergencies 1/¢

they are absorbed by the renormalization of the coupling: as — as(ur)

L
9 IR sector:
o PDF have IR collinear singularities: pole 1/¢ at LO
o these collinear singularities can be compensated by collinear singularities of
the two jets vertices and the real part of the BFKL kernel
o the remaining collinear singularities compensate exactly among themselves
o soft singularities of the real and virtual BFKL kernel, and of the jets vertices
compensates among themselves
This was shown for both quark and gluon initiated vertices (Bartels, Colferai,
Vacca)
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BFKL Green’s function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions

@ NLL BFKLkernel is not conformal invariant
@ LL E, , are not anymore eigenfunction

@ this can be overcome by considering the eigenvalue as an operator with a
part containing 2

@ it acts on the impact factor

1
(i h)

7l'b() 1 9] Cn,u('kJ,1|7xJ71)
- (|n| —l—w){ 21npR 18 In Cron (Kr2|, 272) )

1
w(n,v) = a@sxo (|n| + w) +a?

o1y Kol '2|kJ,2|
MR
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MN jets within MPI
oe

LL substraction and sy

@ onesums up Y (asInd/so)" + as Y (asIns/so)™ (8§ =x1228)
@ at LL s¢ is arbitrary

@ natural choice: so = /50,1 50,2 So0,; for each of the scattering objects

o possible choice: sg; = (Jky| + |ks — k|)? (Bartels, Colferai, Vacca)
9 but depend on k, which is integrated over
@ §is not an external scale (x1,2 are integrated over)

o we prefer 9
X
501 = ([kya|+ ks —ki))2 — s), = —5-k3;
i1 3 . 5 wmyimg,s
) 22, S0 s |kgallkse
S0,2 = (|kJ’2 + |kJ’2 — k2|) — S()Q = TkJ,Q
7,2 — eUS1TYI2 = Y
9 sp — s affects
o the BFKL NLL Green function
@ the impact factors:
1, S0,
onir(kis sp;) = OniL(ki; so,i) + /ko' ¢’LL(k§)/CLL(k§7ki)5 In . i (1)
0,i

@ numerical stabilities (non azimuthal averaging of LL substraction)
improved with the choice so,; = (ki — 2k ;)?
(then replaced by s;, ; after numerical integration)

@ (1) can be used to test so — A so dependence o1 /a8



MN jets within MPI
°

Collinear improvement at NLL

Collinear improved Green's function at NLL

@ one may improve the NLL BFKL kernel for n = 0 by imposing its
compatibility with DGLAP in the collinear limit
Salam; Ciafaloni, Colferai

@ usual (anti)collinear poles in v = 1/2 +4v (resp. 1 — ) are shifted by w/2
@ one practical implementation:
o the new kernel dsx(l)('y,w) with shifted poles replaces
515)(0(’77 0) + 07§X1 (’Yv 0)
@ w(0,v) is obtained by solving the implicit equation
UJ(O, V) = dsx(l) (77 w(07 V))
for w(n,v) numerically.

@ there is no need for any jet vertex improvement because of the absence of
~ and 1 —« poles (numerical proof using Cauchy theorem "backward")

@ this can be extended for all n
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MN jets within MPI
[ Je]

Motivation for asymmetric configurations

@ Initial state radiation (unseen) produces divergencies if one touches the
collinear singularity q*> — 0

Ps_ p%
Mﬂm

q /
PJ2

@ they are compensated by virtual corrections

@ this compensation is in practice difficult to implement when for some
reason this additional emission is in a "corner” of the phase space (dip in
the differential cross-section)

@ this is the case when p1 + p2 — 0

@ this calls for a resummation of large remaing logs = Sudakov resummation
pJ

1
LR RERT
PJ2
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MN jets within MPI
oe

Motivation for asymmetric configurations

@ since these resummation have never been investigated in this context, one
should better avoid that region

@ note that for BFKL, due to additional emission between the two jets, one
may expect a less severe problem (at least a smearing in the dip region

[p1] ~ |p2l)
PJ1

PJ.2
@ this may however not mean that the region |p1| ~ |p2| is perfectly

trustable even in a BFKL type of treatment

@ we now investigate a region where NLL DGLAP is under control
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