Inclusive production of a forward J/ψ and a backward jet at the LHC

Samuel Wallon

Université Pierre et Marie Curie and Laboratoire de Physique Théorique CNRS / Université Paris Sud Orsay

GDR QCD "Partons and Nuclei" Orsay, 1st June 2017

in collaboration with

- R. Boussarie (INP, Kraków)
- B. Ducloué (University of Jyväskylä and Helsinki Institute of Physics)
- L. Szymanowski (NCBJ, Warsaw)

The partonic content of the proton

The various regimes governing the perturbative content of the proton

• "usual" regime: x_B moderate ($x_B \gtrsim .01$): Evolution in Q governed by the QCD renormalization group (Dokshitser, Gribov, Lipatov, Altarelli, Parisi equation)

$$\sum_{n} (\alpha_s \ln Q^2)^n + \alpha_s \sum_{n} (\alpha_s \ln Q^2)^n + \cdots$$
LLQ NLLQ

• perturbative Regge limit: $s_{\gamma^*p} \to \infty$ i.e. $x_B \sim Q^2/s_{\gamma^*p} \to 0$ in the perturbative regime (hard scale Q^2)
(Balitski Fadin Kuraev Lipatov equation)

$$\sum_{n} (\alpha_s \ln s)^n + \alpha_s \sum_{n} (\alpha_s \ln s)^n + \cdots$$
LLs NLLs

QCD in the perturbative Regge limit

- One of the important longstanding theoretical questions raised by QCD is its behaviour in the perturbative Regge limit $s \gg -t$
- Based on theoretical grounds, one should identify and test suitable observables in order to test this peculiar dynamics

hard scales: $M_1^2,\,M_2^2\gg\Lambda_{QCD}^2$ or $M_1'^2,\,M_2'^2\gg\Lambda_{QCD}^2$ or $t\gg\Lambda_{QCD}^2$ where the t-channel exchanged state is the so-called hard Pomeron

How to test QCD in the perturbative Regge limit?

What kind of observable?

- perturbation theory should be applicable: selecting external or internal probes with transverse sizes $\ll 1/\Lambda_{QCD}$ (hard γ^* , heavy meson $(J/\Psi,\Upsilon)$, energetic forward jets) or by choosing large t in order to provide the hard scale.
- governed by the "soft" perturbative dynamics of QCD

and not by its collinear dynamics
$$m=0$$

$$\phi = 0$$

$$m=0$$

 \implies select semi-hard processes with $s\gg p_{T\,i}^2\gg \Lambda_{QCD}^2$ where $p_{T\,i}^2$ are typical transverse scale, all of the same order.

How to test QCD in the perturbative Regge limit?

Some examples of processes

- \bullet inclusive: DIS (HERA), diffractive DIS, total $\gamma^*\gamma^*$ cross-section (LEP, ILC)
- ullet semi-inclusive: forward jet and π^0 production in DIS, Mueller-Navelet double jets, diffractive double jets, high p_T central jet, in hadron-hadron colliders (Tevatron, LHC)
- ullet exclusive: exclusive meson production in DIS, double diffractive meson production at e^+e^- colliders (ILC), ultraperipheral events at LHC (${\Bbb P}$ omeron, ${\Bbb O}$ dderon)

Resummation in QCD: DGLAP vs BFKL

Dynamics of resummations

Small values of α_s (perturbation theory applies if there is a hard scale) can be compensated by large logarithmic enhancements.

When \sqrt{s} becomes very large, it is expected that a BFKL description is needed to get accurate predictions

Perturbative QCD in a fixed order approach

Hard processes in QCD and collinear factorization

- This is justified if the process is governed by a hard scale:
 - Virtuality of the electromagnetic probe

in elastic scattering
$$e^\pm\,p\to e^\pm\,p$$
 in Deep Inelastic Scattering (DIS) $e^\pm\,p\to e^\pm\,X$ in Deep Virtual Compton Scattering (DVCS) $e^\pm\,p\to e^\pm\,p\,\gamma$

- Total center of mass energy in $e^+e^- \to X$ annihilation
- t-channel momentum exchange in meson photoproduction $\gamma p \to M p$
- Mass of a heavy bound state e.g. $J/\Psi, \Upsilon$
- A precise treatment relies on collinear factorization theorems
- Scattering amplitude

convolution

partonic amplitude non-perturbative hadronic content \otimes

(computed at a given fixed order)

QCD in the perturbative Regge limit

$$s \gg M_{\rm hard\ scale}^2 \gg \Lambda_{QCD}^2$$

The amplitude can be written as:

this can be put in the following form :

$$\sigma_{tot}^{h_1 \, h_2 o anything} = \frac{1}{e} Im \mathcal{A} \sim s^{\alpha_{\mathbb{P}}(0)-1}$$

with
$$\alpha_{\mathbb{P}}(0) - 1 = C \alpha_s + C' \alpha_s^2 + \cdots$$

 $C > 0$: Leading Log Pomeron

Balitsky, Fadin, Kuraev, Lipatov

Opening the boxes: Impact representation $\gamma^* \gamma^* \to \gamma^* \gamma^*$ as an example

- Sudakov decomposition: $k_i = \alpha_i p_1 + \beta_i p_2 + k_{\perp i}$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- Write $d^4k_i = \frac{s}{2} d\alpha_i d\beta_i d^2k_{\perp i}$ $(\underline{k} = \text{Eucl.} \leftrightarrow k_{\perp} = \text{Mink.})$
- ullet t-channel gluons have non-sense polarizations at large s: $\epsilon_{NS}^{up/down}=rac{2}{s}\,p_{2/1}$

Higher order corrections

Only a few higher order corrections are known

- Higher order corrections to BFKL kernel are known at NLL order (Lipatov Fadin; Camici, Ciafaloni), now for arbitrary impact parameter $\alpha_S \sum_{m} (\alpha_S \ln s)^n$ resummation
- impact factors are known in some cases at NLL
 - ullet $\gamma^*
 ightarrow \gamma^*$ at t=0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao; Balitski, Chirilli)
 - forward jet production (Bartels, Colferai, Vacca; Caporale, Ivanov, Murdaca, Papa, Perri; Chachamis, Hentschinski, Madrigal, Sabio Vera)
 - inclusive production of a pair of hadrons separated by a large interval of rapidity (Ivanov, Papa)
 - $\gamma_L^* \to \rho_L$ in the forward limit (Ivanov, Kotsky, Papa)

Mueller-Navelet jets: Basics

Mueller-Navelet jets

- Consider two jets (hadrons flying within a narrow cone) separated by a large rapidity, i.e. each of them almost fly in the direction of the hadron "close" to it, and with very similar transverse momenta
- Pure LO collinear treatment: these two jets should be emitted back to back at leading order:
 - $\varphi \equiv \Delta \phi \pi = 0$ ($\Delta \phi = \phi_1 \phi_2 = \text{relative azimuthal angle}$)
 - $k_{\perp 1} = k_{\perp 2}$. No phase space for (untagged) multiple (DGLAP) emission between them

Mueller-Navelet jets: LL fails

Mueller Navelet jets at LL BFKL

- in LL BFKL $(\sim \sum (\alpha_s \ln s)^n)$, emission between these jets \longrightarrow strong decorrelation between the relative azimutal angle jets, incompatible with $p\bar{p}$ Tevatron collider data
- a collinear treatment at next-to-leading order (NLO) can describe the data
- important issue:
 non-conservation
 of energy-momentum
 along the BFKL ladder.
 A LL BFKL-based
 Monte Carlo combined
 with e-m conservation
 improves dramatically
 the situation (Orr and Stirling)

Multi-Regge kinematics (LL BFKL)

Mueller-Navelet jets: beyond LL

Mueller Navelet jets at NLL BFKL

- up to \sim 2010, the subseries $\alpha_s \sum (\alpha_s \ln s)^n$ NLL was included only in the exchanged $\mathbb P$ omeron state, and not inside the jet vertices Sabio Vera, Schwennsen Marquet, Royon
- our studies have shown was that these corrections are very important Colferai, Schwennsen, Szymanowski, S. W. Ducloué, Szymanowski, S. W.

for similar studies and results: Caporale, Ivanov, Murdaca, Papa Caporale, Murdaca, Sabio Vera, Salas

Quasi Multi-Regge kinematics (here for NLL BFKL)

Mueller-Navelet jets at NLL: master formulas

k_T -factorized differential cross section

Mueller-Navelet jets at NLL: Renormalization scale fixing

Renormalization scale uncertainty

- We used the Brodsky-Lepage-Mackenzie (BLM) procedure to fix the renormalization scale
- The BLM procedure resums the self-energy corrections to the gluon propagator at one loop into the running coupling.
- First attempts to apply BLM scale fixing to BFKL processes lead to problematic results. Brodsky, Fadin, Kim, Lipatov and Pivovarov suggested that one should first go to a physical renormalization scheme like MOM and then apply the 'traditional' BLM procedure, i.e. identify the β_0 dependent part and choose μ_B such that it vanishes.

We followed this prescription for the full amplitude at NLL.

Comparison with the data

recall: $\varphi = 0 \Leftrightarrow \mathsf{back}\text{-to-back}$

$$\frac{1}{\sigma} \frac{d\sigma}{d\varphi}$$

$$= \frac{1}{2\pi} \left\{ 1 + 2 \sum_{n=1}^{\infty} \cos(n\varphi) \langle \cos(n\varphi) \rangle \right\}.$$

$$35 \text{ GeV}^2 < \mathbf{k}_{J,1}, \mathbf{k}_{J,2}$$

6 < Y < 9.4

Other effects and references

- Full NLL description
- D. Colferai, F. Schwennsen, L. Szymanowski, S. W., JHEP 1012 (2010) 026 [arXiv:1002.1365 [hep-ph]]
- B. Ducloué, L. Szymanowski, S. W., JHEP 1305 (2013) 096 [arXiv:1302.7012 [hep-ph]]
 - BLM renormalization scale fixing and comparison with data
- B. Ducloué, L. Szymanowski, S. W., Phys. Rev. Lett. 112 (2014) 082003 [arXiv:1309.3229 [hep-ph]]
 - Energy momentum violation: the situation is much improved when including full NLL corrections
- B. Ducloué, L. Szymanowski, S. W., Phys. Lett. B738 (2014) 311-316 [arXiv:1407.6593 [hep-ph]]
 - Multiparton description of Mueller-Navelet jets: two uncorrelated ladders suppressed at LHC kinematics
- B. Ducloué, L. Szymanowski, S. W., Phys. Rev. D92 (2015) 7, 076002 [arXiv:1507.04735 [hep-ph]]
 - Sudakov resummation effects:
 in the almost back-to-back region, and at LL, the resummation as been performed: no overlap with low-x resummation effects
- A. H. Mueller, L. Szymanowski, S. W., B.-W. Xiao, F. Yuan, JHEP 1603 (2016) 096 [arXiv:1512.07127 [hep-ph]]

Inclusive forward J/Ψ and backward jet production at the LHC

Why J/Ψ ?

- ullet Numerous J/ψ mesons are produced at LHC
- J/ψ is "easy" to reconstruct experimentaly through its decay to $\mu^+\mu^-$ pairs
- ullet The mechanism for the production of J/ψ mesons is still to be completely understood (see discussion later), although it was observed more than 40 years ago E598 collab 1974; SLAC-SP collab 1974
- ullet Any improvement of the understanding of these mechanisms is important in view of QGP studies since J/Ψ suppression (melting) is one of the best probe. Cold nuclear effects are numerous and known to make life more complicate
- The vast majority of J/ψ theoretical predictions are done in the collinear factorization framework: would k_t factorization give something different?
- We will perform an MN-like analysis, considering a process with a rapidity difference which is large enough to use BFKL dynamics but small enough to be able to detect J/ψ mesons at LHC (ATLAS, CMS).

Master formula

k_{\perp} -factorization description of the process

$$\hat{s} = x \, x' \, s$$

$$\frac{d\sigma}{dy_V d|p_{V\perp}|d\phi_V dy_J d|p_{J\perp}|d\phi_J}$$

$$= \sum_{a,b} \int \frac{d^2 k_\perp d^2 k'_\perp}{d^2 k'_\perp}$$

$$\times \int_0^1 dx f_a(x) V_{V,a}(k_\perp, x)$$

$$\times G(-\mathbf{k}_{\perp}, -\mathbf{k}_{\perp}', \hat{s})$$

$$\times \int_0^1 dx' f_b(x') V_{J,b}(-\mathbf{k}'_{\perp}, x'),$$

Master formula

k_{\perp} -factorization description of the process

$$\frac{d\sigma}{dy_V d|p_{V\perp}|d\phi_V dy_J d|p_{J\perp}|d\phi_J}$$

$$= \sum_{a,b} \int d^2 k_\perp d^2 k'_\perp$$

$$\times \int_0^1 dx \, f_a(x) \, V_{V,a}(\mathbf{k}_\perp, x)$$

$$\times G(-\mathbf{k}_\perp, -\mathbf{k}'_\perp, \hat{s})$$

$$\times \int_0^1 dx' \, f_b(x') \, V_{J,b}(-\mathbf{k}'_\perp, x'),$$

Quarkonium production in NRQCD

- We will first use the Non Relativistic QCD (NRQCD) formalism Bodwin, Braaten, Lepage; Cho, Leibovich
- Basically, one expands the onium wavefunction wrt the velocity of its constituents $v \sim \frac{1}{\log M}$:

$$|V\rangle = O(1) |Q\bar{Q}[^3S_1^{(1)}]\rangle + O(v) |Q\bar{Q}[^3S_1^{(8)}]g\rangle + O(v^2)$$

Assumption: all the non-perturbative physics is encoded in |V
angle

- \Rightarrow One computes the hard part using the usual Feynman diagram methods and convolute it with the wavefunction afterwards.
- Charge parity conservation \to Hard part M: $Q\bar{Q}$ in a color singlet state + g, $Q\bar{Q}$ in a color octet state.
- ullet In NRQCD, the two Q and ar Q share the quarkonium momentum: $p_V=2q$ this would not be the case for a light meson
- The relative importance of this additional color-octet contribution is still to be determined.
- There is no proof of NRQCD factorization at all orders.

The J/ψ impact factor: NRQCD color singlet contribution

From open quark-antiquark gluon production to J/ψ production

$$[v(q)\bar{u}(q)]^{ij}_{\alpha\beta} \rightarrow \frac{\delta^{ij}}{4N} \left(\frac{\langle \mathcal{O}_1 \rangle_V}{m}\right)^{1/2} \left[\hat{\epsilon}_V^* \left(2\hat{q} + 2m\right)\right]_{\alpha\beta}$$

The J/ψ impact factor: NRQCD color octet contribution

From open quark-antiquark production to J/ψ production

NRQCD color-octet transition vertex:

$$\left[v(q)\bar{u}(q)\right]_{\alpha\beta}^{ij\to d} \to t_{ij}^d d_8 \left(\frac{\langle \mathcal{O}_8 \rangle_V}{m}\right)^{1/2} \left[\hat{\epsilon}_V^* \left(2\hat{q} + 2m\right)\right]_{\alpha\beta}$$

The Color Evaporation Model

Quarkonium production in the color evaporation model

Relies on the local duality hypothesis Fritzsch, Halzen ...

- ullet Consider a heavy quark pair Qar Q with $m_{Oar O} < 2\,m_{Qar q}$ $Q\bar{q} = \text{lightest meson which contains } Q$ e.g D-meson for Q=c
- ullet it will eventually produce a bound Qar Q pair after a series of randomized soft interactions between its production and its confinement in $\frac{1}{6}$ cases, independently of its color and spin.
- It is assumed that the repartition between all the possible charmonium states is universal
- Thus the procedure is the following:
 - ullet Compute all the Feynman diagrams for open $Q\bar{Q}$ production
 - Sum over all spins and colors
 - ullet Integrate over the Qar Q invariant mass

The J/ψ impact factor: relying on the color evaporation model

From open quark-antiquark gluon production to J/ψ production

Introduction

Differential cross sections from both models

 $p_{T1} = 30 \,\text{GeV}, \, p_{T2} = 30 \,\text{GeV}$

Summary

- The production of Mueller-Navelet was successfully described using the BEKI formalism
- \bullet We applied the same formalism for the production of a forward J/Ψ meson and a backward jet, using both the NRQCD formalism and the Color Evaporation Model
- This new process could constitute a good probe of the color octet contribution in NRQCD
- More to come about azimuthal correlations
- A comparison with a fixed order treatment is planned
- \bullet A complete NLL study is very challenging: requires to compute the NLO vertex for J/Ψ production
- Preliminary experimental studies (ATLAS) are very promising