Photon-meson pair photoproduction: a new way to probe Generalized Parton Distributions

Samuel Wallon

Sorbonne Université

and

Laboratoire de Physique Théorique

CNRS / Université Paris Sud Orsay

Assemblée générale du GDR QCD - 2018

Ecole Polytechnique, 26 - 28 November 2018

27 November 2018

in collaboration with

B. Pire (CPhT, Palaiseau), R. Boussarie (LPT Orsay), L. Szymanowski (NCBJ, Warsaw),

G. Duplančić, K. Passek-Kumerički (IRB, Zagreb)

based on:

JHEP 1702 (2017) 054 [arXiv:1609.03830 [hep-ph]] ($\rho\gamma$ production)

JHEP 18xx (2017) xx [arXiv:1809.08104 [hep-ph]] ($\pi\gamma$ production)

The ultimate picture

Extensions from DIS

ullet DIS: inclusive process o forward amplitude (t=0) (optical theorem)

ex:
$$e^{\pm}p \rightarrow e^{\pm}X$$
 at HERA

 $x \Rightarrow 1$ -dimensional structure

Structure Function

= Coefficient Function \otimes Parton Distribution Function (hard) (soft)

- Q² Q² γ*

 Q² γ*

 PDF p
- DVCS: exclusive process \rightarrow non forward amplitude ($-t \ll s = W^2$)

(DVCS: Deep Vitual Compton Scattering)

Fourier transf.: $t \leftrightarrow \text{impact parameter}$

 $(x, t) \Rightarrow 3$ -dimensional structure

Amplitude

= Coefficient Function ⊗ Generalized Parton Distribution (hard) (soft)

Müller et al. '91 - '94; Radyushkin '96; Ji '97

Extensions from DVCS

• Meson production: γ replaced by ρ, π, \cdots

Collins, Frankfurt, Strikman '97; Radyushkin '97

proofs valid only for some restricted cases

Collinear factorization

Meson electroproduction: factorization with a GPD and a DA

The building blocks

 Γ , Γ' : Dirac matrices compatible with quantum numbers: C, P, T, chirality

Similar structure for gluon exchange

Classification of twist 2 GPDs

- For quarks, one should distinguish the exchanges
 - without helicity flip (chiral-even Γ' matrices): 4 chiral-even GPDs:

$$\begin{array}{ll} H^q & \stackrel{\xi=0,t=0}{\longrightarrow} \operatorname{PDF} \; q, \; E^q, \; \tilde{H}^q & \stackrel{\xi=0,t=0}{\longrightarrow} \operatorname{polarized} \operatorname{PDFs} \; \Delta q, \; \tilde{E}^q \\ F^q & = & \frac{1}{2} \int \frac{dz^+}{2\pi} \; e^{ixP^+z^-} \left\langle p' | \; \bar{q}(-\frac{1}{2}z) \, \gamma^+ q(\frac{1}{2}z) \, | p \right\rangle \Big|_{z^+=0,\,z_\perp=0} \\ & = & \frac{1}{2P^+} \left[H^q(x,\xi,t) \, \bar{u}(p') \gamma^+ u(p) + E^q(x,\xi,t) \, \bar{u}(p') \frac{i \, \sigma^{+\alpha} \Delta_\alpha}{2m} u(p) \right], \\ \tilde{F}^q & = & \frac{1}{2} \int \frac{dz^-}{2\pi} \; e^{ixP^+z^-} \left\langle p' | \; \bar{q}(-\frac{1}{2}z) \, \gamma^+ \gamma_5 \, q(\frac{1}{2}z) \, | p \right\rangle \Big|_{z^+=0,\,z_\perp=0} \\ & = & \frac{1}{2P^+} \left[\tilde{H}^q(x,\xi,t) \, \bar{u}(p') \gamma^+ \gamma_5 u(p) + \tilde{E}^q(x,\xi,t) \, \bar{u}(p') \frac{\gamma_5 \, \Delta^+}{2m} u(p) \right]. \end{array}$$

with helicity flip (chiral-odd Γ' mat.): 4 chiral-odd GPDs:

$$H_T^q \xrightarrow{\xi=0,t=0}$$
 quark transversity PDFs $\delta q, E_T^q, \tilde{H}_T^q, \tilde{E}_T^q$

$$\begin{split} &\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) i \sigma^{+i} q(\frac{1}{2}z) | p \rangle \Big|_{z^{+}=0, z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \bar{u}(p') \left[\frac{H_{T}^{q}}{i} i \sigma^{+i} + \tilde{H}_{T}^{q} \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{m^{2}} + \frac{E_{T}^{q}}{2m} \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{m} + \tilde{E}_{T}^{q} \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{m} \right] \end{split}$$

Classification of twist 2 GPDs

- analogously, for gluons:
 - 4 gluonic GPDs without helicity flip:

$$\begin{array}{ll} H^g & \stackrel{\xi=0,t=0}{\longleftrightarrow} \mathsf{PDF} \; x \, g \\ E^g & \\ \tilde{H}^g & \stackrel{\xi=0,t=0}{\longleftrightarrow} \mathsf{polarized} \; \mathsf{PDF} \; x \, \Delta g \end{array}$$

4 gluonic GPDs with helicity flip:

$$H_T^g$$
 E_T^g
 \tilde{H}_T^g
 \tilde{E}_T^g

(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity cannot be compensated by a spin 1/2 target)

Chiral-odd sector: Transversity of the nucleon using hard processes

What is transversity?

• Transverse spin content of the proton:

$$\begin{array}{ccc} |\uparrow\rangle_{(x)} & \sim & |\rightarrow\rangle + |\leftarrow\rangle \\ |\downarrow\rangle_{(x)} & \sim & |\rightarrow\rangle - |\leftarrow\rangle \\ \text{spin along } x & \text{helicity states} \end{array}$$

- Observables which are sensitive to helicity flip thus give access to transversity $\Delta_T q(x)$. Poorly known.
- Transversity GPDs are completely unknown experimentally.

- For massless (anti)particles, chirality = (-)helicity
- Transversity is thus a chiral-odd quantity
- Since (in the massless limit) QCD and QED are chiral-even $(\gamma^{\mu}, \gamma^{\mu}\gamma^{5})$, the chiral-odd quantities $(1, \gamma^{5}, [\gamma^{\mu}, \gamma^{\nu}])$ which one wants to measure should appear in pairs

Transversity of the nucleon using hard processes: using a two body final state process?

How to get access to transversity GPDs?

- the dominant DA of ρ_T is of twist 2 and chiral-odd ($[\gamma^{\mu}, \gamma^{\nu}]$ coupling)
- unfortunately $\gamma^* N^{\uparrow} \to \rho_T N' = 0$
 - This cancellation is true at any order: such a process would require a helicity transfer of 2 from a photon.
 - lowest order diagrammatic argument:

$$\gamma^{\alpha}[\gamma^{\mu}, \gamma^{\nu}]\gamma_{\alpha} \to 0$$

[Diehl, Gousset, Pire], [Collins, Diehl]

Transversity of the nucleon using hard processes: using a two body final state process?

Can one circumvent this vanishing?

- This vanishing only occurs at twist 2
- At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov, Kroll]
- However processes involving twist 3 DAs may face problems with factorization (end-point singularities) can be made safe in the high-energy k_T-factorization approach [Anikin, Ivanov, Pire, Szymanowski, S.W.]
- One can also consider a 3-body final state process [Ivanov, Pire, Szymanowski, Teryaev], [Enberg, Pire, Szymanowski], [El Beiyad, Pire, Segond, Szymanowski, S. W.]

Probing GPDs using ρ or π meson + photon production

- We consider the process $\gamma N \to \gamma M N'$ M = meson
- \bullet Collinear factorization of the amplitude for $\gamma+N\to\gamma+M+N'$ at large $M_{\gamma M}^2$

large angle factorization à la Brodsky Lepage

t (small)

 $M_{\gamma M}^2$

Probing chiral-even GPDs using π meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

chiral-even twist 2 GPD

Probing chiral-even GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

chiral-even twist 2 GPD

Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

chiral-odd twist 2 GPD

Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

How did we manage to circumvent the no-go theorem for $2 \rightarrow 2$ processes?

Typical non-zero diagram for a transverse ρ meson

the σ matrices (from DA and GPD sides) do not kill it anymore!

Master formula based on leading twist 2 factorization

The ρ example

$$\mathcal{A} \propto \int_{-1}^{1} dx \int_{0}^{1} dz \; T(x, \xi, z) \times H(x, \xi, t) \Phi_{\rho}(z) + \cdots$$

- Both the DA and the GPD can be either chiral-even or chiral-odd.
- At twist 2 the longitudinal ρ DA is chiral-even and the transverse ρ DA is chiral-odd.
- Hence we will need both chiral-even and chiral-odd non-perturbative building blocks and hard parts.

000000000 0000000

Kinematics to handle GPD in a 3-body final state process

- use a Sudakov basis : light-cone vectors p, n with $2p \cdot n = s$
- assume the following kinematics:

•
$$\Delta_{\perp} \ll p_{\perp}$$

•
$$M^2$$
, $m_\rho^2 \ll M_{\gamma\rho}^2$

• initial state particle momenta:

$$q^{\mu} = n^{\mu}, \ p_1^{\mu} = (1 + \xi) p^{\mu} + \frac{M^2}{s(1+\xi)} n^{\mu}$$

• final state particle momenta:

$$p_{2}^{\mu} = (1 - \xi) p^{\mu} + \frac{M^{2} + \vec{p}_{t}^{2}}{s(1 - \xi)} n^{\mu} + \Delta_{\perp}^{\mu}$$

$$k^{\mu} = \alpha n^{\mu} + \frac{(\vec{p}_{t} - \vec{\Delta}_{t}/2)^{2}}{\alpha s} p^{\mu} + p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2} ,$$

$$p_{\rho}^{\mu} = \alpha_{\rho} n^{\mu} + \frac{(\vec{p}_{t} + \vec{\Delta}_{t}/2)^{2} + m_{\rho}^{2}}{\alpha_{\rho} s} p^{\mu} - p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2} ,$$

 $\Delta \downarrow$

Non perturbative chiral-even building blocks

• Helicity conserving GPDs at twist 2:

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H^{q}(x, \xi, t) \gamma^{+} + E^{q}(x, \xi, t) \frac{i\sigma^{\alpha +} \Delta_{\alpha}}{2m} \right]$$

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+} \gamma^{5} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[\tilde{H}^{q}(x, \xi, t) \gamma^{+} \gamma^{5} + \tilde{E}^{q}(x, \xi, t) \frac{\gamma^{5} \Delta^{+}}{2m} \right]$$

- We will consider the simplest case when $\Delta_{\perp}=0$.
- In that case and in the forward limit $\xi \to 0$ only the H^q and \tilde{H}^q terms survive.
- Helicity conserving (vector) DA at twist 2 :

$$\langle 0|\bar{u}(0)\gamma^{\mu}u(x)|\rho^{0}(p,s)\rangle = \frac{p^{\mu}}{\sqrt{2}}f_{\rho}\int_{0}^{1}du\ e^{-iup\cdot x}\phi_{\parallel}(u)$$

Non perturbative chiral-odd building blocks

• Helicity flip GPD at twist 2 :

$$\begin{split} & \int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) i \sigma^{+i} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle \\ & = & \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H_{T}^{q}(x, \xi, t) i \sigma^{+i} + \tilde{H}_{T}^{q}(x, \xi, t) \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{M_{N}^{2}} \right. \\ & + & \left. E_{T}^{q}(x, \xi, t) \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{2M_{N}} + \tilde{E}_{T}^{q}(x, \xi, t) \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{M_{N}} \right] u(p_{1}, \lambda_{1}) \end{split}$$

- We will consider the simplest case when $\Delta_{\perp}=0$.
- ullet In that case $\underline{\mbox{and}}$ in the forward limit $\xi o 0$ only the H_T^q term survives.
- Transverse ρ DA at twist 2 :

$$\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho^{0}(p,s)\rangle = \frac{i}{\sqrt{2}}(\epsilon^{\mu}_{\rho}p^{\nu} - \epsilon^{\nu}_{\rho}p^{\mu})f^{\perp}_{\rho}\int_{0}^{1}du\ e^{-iup\cdot x}\ \phi_{\perp}(u)$$

Asymptotical DAs

• We take the simplistic asymptotic form of the (normalized) DAs (i.e. no evolution):

$$\phi_{\pi}(z) = \phi_{\rho \parallel}(z) = \phi_{\rho \perp}(z) = 6z(1-z)$$
.

ullet For the π case, a non asymptotical wave function can be also investigated:

$$\phi_{\pi}(z) = \frac{8}{\pi} \sqrt{z(1-z)}.$$

(under investigation)

Realistic Parametrization of GPDs

• GPDs can be represented in terms of Double Distributions [Radyushkin] based on the Schwinger representation of a toy model for GPDs which has the structure of a triangle diagram in scalar ϕ^3 theory

$$H^{q}(x,\xi,t=0) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \xi\alpha - x) \, f^{q}(\beta,\alpha)$$

- ansatz for these Double Distributions [Radyushkin]:
 - chiral-even sector:

$$\begin{split} f^q(\beta,\alpha,t=0) &=& \Pi(\beta,\alpha)\,q(\beta)\Theta(\beta) - \Pi(-\beta,\alpha)\,\bar{q}(-\beta)\,\Theta(-\beta)\,, \\ \tilde{f}^q(\beta,\alpha,t=0) &=& \Pi(\beta,\alpha)\,\Delta q(\beta)\Theta(\beta) + \Pi(-\beta,\alpha)\,\Delta\bar{q}(-\beta)\,\Theta(-\beta)\,. \end{split}$$

chiral-odd sector:

$$f_T^q(\beta,\alpha,t=0) \quad = \quad \Pi(\beta,\alpha)\,\delta q(\beta)\Theta(\beta) - \Pi(-\beta,\alpha)\,\delta \bar{q}(-\beta)\,\Theta(-\beta)\,,$$

- $\Pi(\beta, \alpha) = \frac{3}{4} \frac{(1-\beta)^2 \alpha^2}{(1-\beta)^3}$: profile function
- simplistic factorized ansatz for the *t*-dependence:

$$H^q(x,\xi,t) = H^q(x,\xi,t=0) \times F_H(t)$$

with
$$F_H(t) = \frac{C^2}{(t-C)^2}$$
 a standard dipole form factor $(C=.71 \text{ GeV})$

Sets of used PDFs

- q(x): unpolarized PDF [GRV-98]
 and [MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo]
- $\Delta q(x)$ polarized PDF [GRSV-2000]
- $\delta q(x)$: transversity PDF [Anselmino et al.]

Typical sets of chiral-even GPDs (C=-1 sector)

$$\xi = .1 \leftrightarrow S_{\gamma N} = 20~{\rm GeV}^2$$
 and $M_{\gamma \rho}^2 = 3.5~{\rm GeV}^2$

five Ansätze for q(x): GRV-98, MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo

$$\tilde{H}^{q(-)}(x,\xi,t) = \tilde{H}^{q}(x,\xi,t) - \tilde{H}^{q}(-x,\xi,t)$$

"valence" and "standard" (flavor-asymmetries in the polarized antiquark sector are neglected): two GRSV Ansätze for $\Delta q(x)$

Typical sets of chiral-odd GPDs (C = -1 sector)

$$\xi = .1 \leftrightarrow S_{\gamma N} = 20~{
m GeV}^2$$
 and $M_{\gamma \rho}^2 = 3.5~{
m GeV}^2$

"valence" and "standard": two GRSV Ansätze for $\Delta q(x)$ \Rightarrow two Ansätze for $\delta q(x)$

Computation of the hard part

20 diagrams to compute

- \bullet The other half can be deduced by $q \leftrightarrow \bar{q}$ (anti)symmetry depending on C-parity in t--channel
- Red diagrams cancel in the chiral-odd case

Final computation

Final computation

$$\mathcal{A} \propto \int_{-1}^{1} dx \int_{0}^{1} dz \; T(x, \xi, z) \; H(x, \xi, t) \; \Phi_{\rho}(z)$$

- One performs the z integration analytically using an asymptotic DA $\propto z(1-z)$
- ullet One then plugs our GPD models into the formula and performs the integral w.r.t. x numerically.
- Differential cross section:

$$\left.\frac{d\sigma}{dt\,du'\,dM_{\gamma\rho}^2}\right|_{-t=(-t)_{min}} = \frac{|\overline{\mathcal{M}}|^2}{32S_{\gamma N}^2M_{\gamma\rho}^2(2\pi)^3}\,.$$

 $|\overline{\mathcal{M}}|^2$ = averaged amplitude squared

• Kinematical parameters: $S_{\gamma N}^2$, $M_{\gamma \rho}^2$ and -u'

Fully differential cross section: ρ_L

Chiral even cross section

at
$$-t = (-t)_{\min}$$

proton target

neutron target

$$S_{\gamma N}=20~{
m GeV}^2 \ M_{\gamma
ho}^2=3,4,5,6~{
m GeV}^2 \$$
solid: "valence" model

dotted: "standard" model

Fully differential cross section: ρ_{T}

Chiral odd cross section

at
$$-t = (-t)_{\min}$$

"valence" and "standard" models, each of them with $\pm 2\sigma$ [S. Melis]

neutron target "valence" model only

$$S_{\gamma N} = 20 \text{ GeV}^2$$

 $M_{\gamma \rho}^2 = 3, 4, 5, 6 \text{ GeV}^2$

Phase space integration

Evolution of the phase space in (-t, -u') plane

large angle scattering: $M_{\gamma\rho}^2 \sim -u' \sim -t'$

in practice: $-u' > 1 \text{ GeV}^2$ and $-t' > 1 \text{ GeV}^2$ and $(-t)_{\min} \leqslant -t \leqslant .5 \text{ GeV}^2$ this ensures large $M_{\gamma\rho}^2$

example: $S_{\gamma N} = 20 \text{ GeV}^2$

Mapping $(S_{\gamma N}, M_{\gamma n}) \mapsto (\tilde{S}_{\gamma N}, \tilde{M}_{\gamma n})$

One can save a lot of CPU time:

- \bullet $\mathcal{M}(\alpha, \xi)$ and $GPDs(\xi, x)$
- In the generalized Bjorken limit:

Given $S_{\gamma N}$ (= 20 GeV²), with its grid in $M_{\gamma n}^2$, choose another $\tilde{S}_{\gamma N}$. One can get the corresponding grid in $M_{\gamma\rho}$ by just keeping the same ξ 's:

$$\tilde{M}_{\gamma\rho}^2 = M_{\gamma\rho}^2 \frac{\tilde{S}_{\gamma N} - M^2}{S_{\gamma N} - M^2} \,,$$

From the grid in -u', the new grid in $-\tilde{u}'$ is given by just keeping the same α 's:

$$-\tilde{u}' = \frac{\tilde{M}_{\gamma\rho}^2}{M_{\gamma\rho}^2} (-u') .$$

 \Rightarrow a single set of numerical computations is required (we take $S_{\gamma N}=20~{
m GeV^2}$)

Single differential cross section: ρ_L

Chiral even cross section

 $S_{\gamma N}$ vary in the set 8, 10, 12, 14, 16, 18, 20 ${\rm GeV}^2$ (from left to right)

typical JLab kinematics

Single differential cross section: ρ_T

Chiral odd cross section

Various ansätze for the PDFs Δq used to build the GPD H_T :

- dotted curves: "standard" scenario
- solid curves: "valence" scenario
- deep-blue and red curves: central values
- light-blue and orange: results with $\pm 2\sigma$.

Single differential cross section: ρ_T

Chiral odd cross section

proton target, "valence" scenario

 $S_{\gamma N}$ vary in the set 8, 10, 12, 14, 16, 18, 20 GeV² (from left to right)

Integrated cross-section: ρ_L

Chiral even cross section

solid red: "valence" scenario dashed blue: "standard" one

Integrated cross-section: ρ_T

Chiral odd cross section

solid red: "valence" scenario dashed blue: "standard" one

Counting rates for 100 days: ρ

example: JLab Hall B

- untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- With an expected luminosity of $\mathcal{L} = 100~\mathrm{nb}^{-1}s^{-1}$, for 100 days of run:
 - \bullet Chiral even case : $\simeq 1.9 \ 10^5 \ \rho_L$.
 - Chiral odd case : $\simeq 7.5 \ 10^3 \ \rho_T$

Fully differential cross section: π^{\pm}

Chiral even sector: π^{\pm} at $-t = (-t)_{\min}$

$$\frac{d\sigma_{\gamma\pi^-}}{dM^2 - d(-u')d(-t)} \text{ (pb · GeV}^{-6})$$

 π^+ photoproduction (proton target) π^- photoproduction (neutron target)

$$S_{\gamma N} = 20 \text{ GeV}^2$$
 $M_{\gamma \rho}^2 = 4 \text{ GeV}^2$

$$M_{\rm ex}^2 = 4 \, {\rm GeV}^2$$

vector GPD / axial GPD / total result

solid: "valence" model dotted: "standard" model

Fully differential cross section: π^{\pm}

Chiral even sector: π^{\pm} at $-t = (-t)_{min}$

 π^+ photoproduction (proton target)

$$\pi^-$$
 photoproduction (neutron target)

$$S_{\gamma N}=20~{
m GeV}^2$$
 $M_{\gamma
ho}^2=3,4,5,6~{
m GeV}^2$ solid: "valence" model dotted: "standard" model

Single differential cross section: π^{\pm}

Chiral even sector: π^{\pm}

 $S_{\gamma N}$ vary in the set 8, 10, 12, 14, 16, 18, 20 GeV² (from left to right)

solid: "valence" model dotted: "standard" model

Integrated cross-section: π^{\pm}

Chiral even sector: π^{\pm}

photoproduction (proton tanget) " photoproduction (neutron t

solid red: "valence" scenario dashed blue: "standard" one

Counting rates for 100 days: π^{\pm}

example: JLab Hall B

- ullet untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- With an expected luminosity of $\mathcal{L}=100~\mathrm{nb}^{-1}s^{-1},$ for 100 days of run:

•
$$\pi^+$$
 : $\simeq 10^4$

•
$$\pi^-$$
 : $\simeq 4 \times 10^4$

- High statistics for the chiral-even components: enough to extract H (\tilde{H} ?) and test the universality of GPDs in ρ^0 , ρ^\pm (not shown) and π^\pm channels
- In this chiral-even sector: analogy with Timelike Compton Scattering, the $\gamma\rho$ or $\gamma\pi$ pair playing the role of the γ^* .
- \bullet ρ -channel: chiral-even component w.r.t. the chiral-odd one:

$$\sigma_{odd}/\sigma_{even} \sim 1/25$$
.

- possible separation $ho_L/
 ho_T$ through an angular analysis of its decay products
- \bullet Future: study of polarization observables \Rightarrow sensitive to the interference of these two amplitudes: very sizable effect expected, of the order of 20%
- The Bethe Heitler component (outgoing γ emitted from the incoming lepton) is:
 - zero for the chiral-odd case
 - suppressed for the chiral-even case
- Possible measurement at JLab (Hall B, C, D)
- A similar study could be performed at COMPASS. EIC, LHC in UPC?

Conclusion

- For $\gamma \pi^{\pm}$ photoproduction:
 - Effect of non asymptotical π DA?

$$\phi_{\pi}(z) = \frac{8}{\pi} \sqrt{z(1-z)}$$

AdS/QCD correspondence, dynamical chiral symmetry breaking on the light-front, etc.

- Effect of twist 3 contributions? presumably important for π electroproduction
- Observables sensitive to quantum interferences:
 - \bullet γ beam asymmetry
 - Target polarization asymmetries
 - For $\rho^0 \gamma$ photoproduction: built from the $\pi^+ \pi^-$ decay product angular distribution \Rightarrow chiral odd versus chiral even
- Loop corrections: in progress
- ullet Accessing GPDs in light nuclei: spin-0 case using an 4He target
- ullet Crossed-channel: using the J-PARC π beam (spallation reaction of a proton beam):

$$\pi N \to \gamma \gamma N$$

- The processes $\gamma N \to \gamma \pi^0 N'$ and $\gamma N \to \gamma \eta^0 N'$ are of particular interest: they give an access to the gluonic GPDs at Born order.
- Our result can also be applied to electroproduction ($Q^2 \neq 0$) after adding Bethe-Heitler contributions and interferences.
- New release of PARTONS platform

Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ ρ_L photoproduction

after boosting to the lab frame

$$S_{\gamma N} = 10 \text{ GeV}^2$$

$$S_{\gamma N} = 15 \text{ GeV}^2$$

$$S_{\gamma N} = 20 \text{ GeV}^2$$

$$M_{\gamma a}^2 = 3, 4 \text{ GeV}^2$$

$$M_{\gamma o}^2 = 3, 4, 5 \text{ GeV}^2$$

$$M_{\gamma\rho}^2 = 3, 4, 5 \text{ GeV}^2$$

JLab Hall B detector equipped between 5° and 35°

Effects of an experimental angular restriction for the produced $\boldsymbol{\gamma}$

Angular distribution of the produced γ ρ_L photoproduction

$$S_{\gamma N} = 10 \text{ GeV}^2$$

$$S_{\gamma N} = 15 \text{ GeV}^2$$

$$S_{\gamma N} = 20 \text{ GeV}^2$$

$$\theta_{max} = 35^{\circ}, 30^{\circ}, 25^{\circ}, 20^{\circ}, 15^{\circ}, 10^{\circ}$$

JLab Hall B detector equipped between 5° and 35°

Effects of an experimental angular restriction for the produced $\boldsymbol{\gamma}$

Angular distribution of the produced γ ρ_T photoproduction

after boosting to the lab frame

$$S_{\gamma N} = 10 \text{ GeV}^2$$

$$S_{\gamma N} = 15 \text{ GeV}^2$$

$$S_{\gamma N} = 20 \text{ GeV}^2$$

$$M_{\gamma o}^2 = 3, 4 \text{ GeV}^2$$

$$M_{\gamma a}^2 = 3.5, 5, 6.5 \text{ GeV}^2$$

$$M_{\gamma\rho}^2 = 4, 6, 8 \text{ GeV}^2$$

JLab Hall B detector equipped between 5° and 35°

Effects of an experimental angular restriction for the produced $\boldsymbol{\gamma}$

Angular distribution of the produced γ ρ_T photoproduction

$$\theta_{max} = 35^{\circ}, 30^{\circ}, 25^{\circ}, 20^{\circ}, 15^{\circ}, 10^{\circ}$$

JLab Hall B detector equipped between 5° and 35°

Chiral-even cross section

Contribution of u versus d ρ_L photoproduction

 $M_{\gamma\rho}^2=4~{\rm GeV^2}.$ Both vector and axial GPDs are included.

u + d quarks u quark d quark

Solid: "valence" model dotted: "standard" model

- u-quark contribution dominates due to the charge effect
- ullet the interference between u and d contributions is important and negative.

Chiral-even cross section

Contribution of vector versus axial amplitudes ρ_L photoproduction

 $M_{\gamma o}^2=4~{\rm GeV}^2.$ Both u and d quark contributions are included.

vector + axial amplitudes / vector amplitude / axial amplitude
solid: "valence" model
dotted: "standard" model

- dominance of the vector GPD contributions
- no interference between the vector and axial amplitudes