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Moyal spaces - Motivations

I Among the oldest known exemples of noncommutative spaces

I Rooted in Weyl quantization (∼1926) aiming to interpret quantum mechanics
as a deformation of classical mechanics:

I Associate to any function on phase space a self-adjoint operator
I Yields a natural construction of a deformation of the usual commutative

product on algebra of functions on phase space:
I Called ?-product or Moyal product (dev. by Moyal ∼ 1949)

I Physics: Decreasing interest > 1960 - Mathematical developments in
deformation theory
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Moyal spaces - Motivations - II

I Moyal-product: integral formula among functions of S(Rn) with Rn

translation

I Rieffel deformation theory: ?-product particular case of “generalised”
?-product from isometric action α of some Rp on C* alg. of functions (plus
given Θ ∈Mp(C)), ?Θ.

I i) M compact Riemann and α periodic: Periodic isospectral deformation,
((C(M), .), L2(M,S),D) —> ((C(M), ?Θ), L2(M, S),D)

I ii) Generalisable to non compact M - αRn : (non compact) non periodic
isospectral deformation
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Moyal spaces - Motivations - III

I Moyal plane can be viewed as non periodic isospectral deformation of R2

((S(R2), ?), L2(R2)⊗ C2,D) where D is usual Dirac operator on R2.

I Physicists use algebra of multiplicators of S(R2) (and dont use spectral triple
description)

I 1998 - 2001: Physicists: Revival and growing interest for “Moyal
noncommutative geometry”: Occurence of Moyal product in some “limit” of
string theory.

I 2000: Evidence for new problem with renormalisability of field theories on
noncommutative Moyal spaces.

I Interesting in mathematical physics: pathologies expected to be generic of
many type of noncommutative field theories.
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Moyal spaces - Motivations - IV

I ∼ 2004: Renormalisation of one NC scalar field theory in d = 4 with
“harmonic term” [Grosse, Wulkenhaar]

I ∼2002-2004 Non unital version of above spectral triple as candidate for non
compact Riemann spin noncommutative geometry - One motivation: can one
fit rudimentary constructions by physicists of NC gauge theories with spectral
action principle ? [Gayral, Gracia-Bondia, Iochum, Schücker, Varilly]

I 2007: Construction of candidate for renormalisable NC gauge theory in d = 4
[de Goursac, Wallet, Wulkenhaar]

I 2008: Vacuum configurations for the above theory in d = 2 and d = 4
[de Goursac, Wallet]
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I 2007: Construction of candidate for renormalisable NC gauge theory in d = 4
[de Goursac, Wallet, Wulkenhaar]

I 2008: Vacuum configurations for the above theory in d = 2 and d = 4
[de Goursac, Wallet]

5



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

Some features of Moyal spaces

I Part 1: Metric aspects of noncommutative Moyal geometry

I i) Can one characterize properties of the spectral distance on Moyal planes?
I ii) Can one possibly compute explicit distance formula?

First exemple of explicit spectral distance formula on a not almost
commutative space (or finite space)
Extend to other triples (Poddles̀, Tori, SUq(2)) (under study)
D’Andrea, Martinetti, Wallet

I Part 2: NC gauge theories on a nutshell.
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THE SPECTRAL DISTANCE Definition

Spectral triple and Spectral distance
Definition 1

Spectral triple is (A,H,D) with:
i) A, associative involutive algebra, represented faithfully π : A→ B(H), H
(separable) Hilbert
ii) D selfadjoint not necessarely bounded, defined on Dom(D) dense in H
iii) For any a ∈ A, π(a)(D − λ)−1 ∈ K(H), ∀λ /∈Sp(D)
iv) For any a ∈ A, [D, π(a)] ∈ B(H)

I Supplemented by additional conditions. Will be discused below for non
compact Moyal triple [Gayral,Gracia-Bondia,Iochum,Schücker,Varilly 2004]

I What is needed to actually compute the distance is (A,H,D).

Definition 2 (Connes, 1994)

A spectral triple (A,H,D) induces a distance on the space of states S(A) defined
by

d(ω1, ω2) = sup
a∈A

(
|ω1(a)− ω2(a)|, ||[D, π(a)]|| ≤ 1

)
(1)

for any ω1, ω2 ∈ A.

I9



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

THE SPECTRAL DISTANCE Exemples

Exemples
I Commutative triple coding M compact Riemann spin:

d coincides with Riemann distance on M. Initial observation (Connes)
I 2 ways to get Riemann distance:(γ : [0, 1]→ M, γ(0) = ω1, γ(1) = ω2)

dg (ω1, ω2) := inf
γ

`
l(γ)

´
= sup

a∈C(M)

`
|a(ω1)− a(ω2)|, ||[D, a]|| ≤ 1

´
LHS: Trajectories; RHS: operatorial. ||[D, a]|| = ||∇a||∞, a ∈ C(M).
Commutative case: points are pure states (a(ω) = ω(a)).

I (A = C⊕ C,C2,D). Pure states are end points of [0, 1].
I d = 1

|a| for D =antidiag(a, a) (a 6= 0) - d = +∞ for D =diag(a, b).

I (M2(C),C2,D), spD = (α, β), α 6= β [Krajewski,Iochum,Martinetti 2001] - Pure
states: CP1 ∼ S2

d(P,Q) =
1

|α− β|
((xP − xQ)2 + (yP − yQ)2)1/2, zP = zQ

d(P,Q) = +∞, zP 6= zQ

I First rudimentary exemple from physicists: 1-D lattice (Dirac operator=finite
difference operator) d ∼lattice spacing [Dimakis, Müller-Hoissen 1993; Bimonte,

Lizzi, 1994]
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THE SPECTRAL DISTANCE Other exemples

Other exemples

I Other explicit exemples?

I Extension of (M2(C),C2,D) by [Krajewski,Iochum,Martinetti 2001] to Mn(C) fails
for n > 3.

I Some can be done partialy on almost commutative geometry.

I No other available exemples - Finite dimension or lattice. Become untractable
a priori due to rapidly increasing difficulties for more sophisticated
noncommutative geometries.

I Proposed criterium for Compact Quantum Metric Space [Rieffel 1998-2003].

I The present contruction: First explicit distance formula on non trivial
noncommutative space: Moyal space.
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MOYAL - BASICS The Moyal product

The Moyal product
I S(R2) ≡ S: Schwarz functions, S ′(R2) ≡ S ′, ||.||2, 〈., .〉: L2(R2) norm and

inner product.

Definition 3

Associative bilinear Moyal ?-product defined as: ? : S × S → S, ∀a, b ∈ S

(a ? b)(x) =
1

(πθ)2

∫
d2yd2t a(x + y)b(x + t)e−i2yΘ−1t

yΘ−1t ≡ yµΘ−1
µν tν , Θµν = θ

(
0 1
−1 0

)
, θ ∈ R, θ 6= 0

Proposition 4 (see e.g Gracia-Bondia, Varilly, 1988)

One has:
i) (a ? b)† = b† ? a†

ii) (a, b) :=
∫

d2x (a ? b)(x) =
∫

d2x (b ? a)(x) =
∫

d2x a(x)b(x)
iii) ∂µ(a ? b) = ∂µa ? b + a ? ∂µb.
iv) A ≡ (S, ?) is a non unital associative involutive Fréchet algebra.

I

Go to
13
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MOYAL - BASICS The matrix base

The matrix base
I Natural basis for (S, ?):

Definition 5

Matrix base: family of functions {fmn}m,n∈N ⊂ S such that

H ? fmn = θ(m +
1

2
)fmn, fmn ? H = θ(n +

1

2
)fmn, H =

1

2
(x2

1 + x2
2 ), ∀m, n ∈ N

I Usefull properties (Set z̄ = 1√
2

(x1 − ix2), z = 1√
2

(x1 + ix2).)

Proposition 6

{fmn}m,n∈N with fmn = 1
(θm+nm!n!)1/2 z̄?m ? f00 ? z?n, f00 = 2e−2H/θ. One has :

fmn ? fpq = δnpfmq, f ∗mn = fnm, 〈fmn, fkl〉 = (2πθ)δmkδnl (2)

I Usefull isomorphism

Proposition 7 (Gracia-Bondia, Varilly, 1988)

Frechet algebra isomorphism between A ≡ (S, ?) and matrix algebra of decreasing
sequences (amn), ∀m, n ∈ N defined by a =

∑
m,n amnfmn, ∀a ∈ S, such that the

semi-norms ρ2
k(a) ≡

∑
m,n θ

2k(m + 1
2 )k(n + 1

2 )k |amn|2 <∞, ∀k ∈ N.

14
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MOYAL - BASICS Usefull properties of the matrix base

The matrix base - II
I Within matrix base, star product is like “matrix product”. For

a =
∑

m,n amnfmn, b =
∑

m,n bmnfmn, a, b ∈ S, sequences cmn =
∑

p ampbpn,
∀m, n ∈ N define the function c =

∑
m,n cmnfmn := a ? b.

I ?-product can be extended to larger space of functions. For present purpose,
enough to deal with L2(R2).

I {fmn}m,n∈N base of L2(R2).
I Usefull property (Set La(b) := a ? b)

Proposition 8

For any a, b ∈ L2(R2), a ? b ∈ L2(R2), ||a ? b||2 ≤ 1
2πθ ||a||2||b||2 so that

||La|| ≤ 1
2πθ ||a||2.

Proof.

Use matrix base and Cauchy-Schwartz inequality.

Proposition 9 (Gracia-Bondia, Varilly, 1988)

(A, ?) is a pre-C* algebra.
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DISTANCE ON MOYAL PLANE The Moyal spectral triple

The Moyal spectral triple
Set ∂ := 1√

2
(∂1 − i∂2), ∂̄ := 1√

2
(∂1 + i∂2).

Proposition 10

(A := (S, ?), H := L2(R2)⊗ C2, D := −i∂µ ⊗ σµ) with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, D = −i

√
2

(
0 ∂̄
∂ 0

)
is a spectral triple.

II D usual Dirac operator on R2. Self-adjoint, densely defined on
Dom(D) = (DL2 ⊗ C2).

I Left regular representation: π : A → B(H), π(a) := La ⊗ I2.
π(a)ψ = (a ? ψ1, a ? ψ2), ∀ψ = (ψ1, ψ2) ∈ H, ∀a ∈ A.

I For any a ∈ S, π(a) ∈ B(H) (Prop. 8). [D, π(a)] ∈ B(H) in view of

[D, π(a)]ψ = −i
√

2

(
L∂a 0
0 L∂̄a

)(
φ2

φ1

)
, ∀ψ =

(
φ1

φ2

)
∈ H

I π(a)(D − λ)−1 ∈ K(H), ∀a ∈ A, ∀λ /∈Sp(D).
Use:π(a)(D − iρ)−1 ∈ K(H) ⇐⇒ π(a)(D2 + ρ2)−1 ∈ K(H) (ρ ∈ R∗ and
observe that for any a, b ∈ L2(R2), L(a)b(−i∇) is Hilbert-Schmidt [B.Simons].
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DISTANCE ON MOYAL PLANE The Moyal spectral triple

The Moyal spectral triple - II

Additional algebraic conditions:
- Self-adjoint operator on H χ := I⊗ (−iσ1σ2). χ2 = 1, defines a Z2-grading of H
and Dχ = −χD. (Physics: Like chirality operator)
- J : H → H, J := I⊗ (−iχσ1).κ (Physics: Like charge conjugation operation).
J2 = −1, DJ = JD, Jχ = −χJ. One checks: [a, Jb∗J−1] = 0 and
[[D, π(a)], Jb∗J−1] = 0 (1st order condt.), ∀a, b ∈ A.
- Spectral dimension =2. [Gayral, Gracia-Bondia, Iochum, Schücker,Varilly, 2004]

Proposition 11

((A,H,D);χ, J) is an even real spectral triple with spectral dimension 2.

Compute spectral distance formula between two pure states.
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DISTANCE ON MOYAL PLANE Spectral distance on the Moyal plane

Pure states
I Very convenient to use the matrix base.

I Observe: Representation of A in the triple reducible. GN :=Span(fmN)m∈N, N
fixed, invariant under left action of A.

I Vector state: ωmn(a) := 1
2πθ

< fmn, Lafmn >= amm. Depends only on “first
index”. Then, fix N = 0. Work with G0.

Proposition 12

The pure states of Ā are the vector states ωψ : Ā → C defined by any unit vector
ψ ∈ L2(R2) of the form ψ =

P
m∈N ψmfm0,

P
m∈N |ψm|2 = 1

2πθ
and one has

ωψ(a) ≡
˙
(ψ, 0), π(a)(ψ, 0)

¸
= 2πθ

X
m,n∈N

ψ∗mψnamn (3)

Proof.

i) Show that Ā is ?-isomorphic to K(G0).
ii) The result follows from Lemma [Kadison, II, p.750]: Let A, a sub-C* of B(H),
K(H) ⊆ A, ρ a pure state of A. Then, either ρ = 0 or ρ is vector state generated
by some unit vector in H.

I Go to

19



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

DISTANCE ON MOYAL PLANE Spectral distance on the Moyal plane

Pure states
I Very convenient to use the matrix base.

I Observe: Representation of A in the triple reducible. GN :=Span(fmN)m∈N, N
fixed, invariant under left action of A.

I Vector state: ωmn(a) := 1
2πθ

< fmn, Lafmn >= amm. Depends only on “first
index”. Then, fix N = 0. Work with G0.

Proposition 12
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DISTANCE ON MOYAL PLANE Technical lemma

Usefull lemma

I Define: B1 :=
{

a ∈ A, / ||[D, π(a)]|| ≤ 1
}

.

I Lemma extends to NC torus, Podles̀ sphere, SUq(2) [CW 2009]

Lemma 13 (CW 2009, CDMW 2009)

We set ∂a =
∑

m,n αmnfmn and ∂̄a =
∑

m,n βmnfmn, for any a ∈ A.
Assume that a ∈ B1. Then:
i) |αmn| ≤ 1√

2
and |βmn| ≤ 1√

2
, ∀m, n ∈ N.

ii) Define â(m0) :=
∑

p,q∈N âpq(m0)fpq with

âpq(m0) = δpq

√
θ

2

m0∑
k=p

1√
k + 1

,with fixed m0 ∈ N.

Let A+ denotes the set of positive elements of A. Then, â(m0) ∈ A+ and
||[D, π(â(m0))]||op = 1 for any m0 ∈ N.

Proof.

Go to
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DISTANCE ON MOYAL PLANE Theorem

A spectral distance formula on the Moyal plane

Definition 14

We denote by ωm the pure state generated by the unit vector 1√
2πθ

fm0, ∀m ∈ N.

For any a =
∑

m,n amnfmn ∈ A, one has ωm(a) = amm.

I

Theorem 15 (CDMW 2009)

The spectral distance between any two pure states ωm and ωn is

d(ωm, ωn) =

√
θ

2

m∑
k=n+1

1√
k
, ∀m, n ∈ N, n < m. (4)

It verifies the “triangular equality“

d(ωm, ωn) = d(ωm, ωp) + d(ωp, ωn), ∀m, n, p ∈ N. (5)

I
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DISTANCE ON MOYAL PLANE Theorem

Proof of theTheorem

Proof.

Algebraic property of matrix base yields

αn+1,n =

√
n + 1

θ
(an+1,n+1 − an,n) =

√
n + 1

θ
(ωn+1(a)− ωn(a)), ∀n ∈ N.

Use Lemma: for any a in the unit ball, |ωn+1(a)− ωn(a))| ≤
√

θ
2

1√
n+1

, ∀n ∈ N so

d(ωn+1, ωn) ≤
√

θ
2

1√
n+1

, ∀n ∈ N. This bound is saturated by any â(m0), m0 ≥ n,

m0, n ∈ N defined in Lemma.Therefore: d(ωn+1, ωn) =
√

θ
2

1√
n+1

, ∀n ∈ N. Now,

triangular inequality: d(ωm, ωn) ≤
∑m−1

k=n d(ωk , ωk+1), (assuming n < m). Upper
bound saturated by any â(m0), m0 ≥ n. Consider |ωm(â(m0))− ωn(â(m0)))|,
n < m ≤ m0.

|ωm(â(m0))− ωn(â(m0)))| =

√
θ

2
|

m0∑
k=m

1√
k + 1

−
m0∑
k=n

1√
k + 1

| =

√
θ

2

m−1∑
k=n

1√
k + 1

(6)
Therefore, d(ωm, ωn) satisfies (5). Relation (4) follows immediately.

22



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

DISCUSSION

DISCUSSION
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DISCUSSION

Some states at finite distance
I Some states at finite distance to each other

Proposition 16

Let I be a finite subset of N and let Λ =
∑

m∈I⊂N λmfm0 denotes a unit vector of
L2(R2). Then d(ωn, ωΛ) < +∞, for any n ∈ N.

Proof.

For any n ∈ N, and any a ∈ A, including any element of the unit ball, one has

|ωΛ(a)− ωn(a)| = |2πθ
∑

p,q∈I
apqλ

?
pλq − ann| ≤ 2πθ

∑
p,q∈I

|apq||λ?pλq|+ |ann|

≤
∑

p,q∈I
|apq|+ |ann|

(last inequality from: |λn| ≤ 1√
2πθ

, ∀n ∈ I). Simple algebraic property of matrix

base: amn’s expressible as finite sums of αmn and βmn. Unit ball: |αmn| ≤ 1√
2πθ

and |βmn| ≤ 1√
2πθ

. Therefore RHS bounded.
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DISCUSSION States at infinite distance

States at infinite distance

II There are pure states at infinite distance

Definition 17

Let ψ(s) family of unit vectors of L2(R2) defined by

ψ(s) := 1√
2πθ

∑
m∈N

√
1

ζ(s)(m+1)s fm0 for any s ∈ R, s > 1 (ζ(s) Riemann zeta

function). Corresponding family of pure states denoted by ωψ(s), for any s ∈ R,
s > 1, with ωψ(s) as in Proposition 12.

I At infinite distance from any ωm

Proposition 18 (CDMW 2009)

d(ωn, ωψ(s)) = +∞, ∀s ∈]1, 3
2 ], ∀n ∈ N .
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DISCUSSION States at infinite distance

Proof of Proposition 18
Proof.

B(m0;ψ,ψ′) := |ωψ′(â(m0))− ωψ(â(m0))| ≤ d(ωψ, ω
′
ψ), ∀m0 ∈ N. (7)

First pick ψ = 1√
2πθ

f00 := ψ0. Assume that ψ′ = ψ(s). Then:

B(m0;ψ0, ψ(s)) =

√
θ

2

∣∣ m0∑
m=0

m0∑
k=m

1√
k + 1

1

ζ(s)(m + 1)s
−

m0∑
k=0

1√
k + 1

∣∣. (8)

Next: ”
∑m0

k=m =
∑m0

k=0−
∑m

k=0“

B(m0;ψ0, ψ(s)) =

√
θ

2

∣∣A1(m0) +
1

ζ(s)

m0∑
m=0

m∑
k=0

1

(m + 1)s
√

k + 1

∣∣. (9)

A1(m0) positive term. Then observe

1

ζ(s)

m0∑
m=0

m+1∑
k=1

1

(m + 1)s
√

k
≥ 1

ζ(s)

m0∑
m=0

√
m + 1

(m + 1)s
, (10)

use
∑m+1

k=1
1√
k
≥ 2(
√

m + 2− 1). A2(m0) bounded below by quantity divergent

when m0 goes to +∞ whenever s ≤ 3
2 . Therefore: d(ω0, ωψ(s)) = +∞, ∀s ∈]1, 3

2 ].
Triangular inequality d(ω0, ωψ(s)) ≤ d(ω0, ωn) + d(ωn, ωψ(s)), for any n ∈ N
terminates the proof.
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DISCUSSION States at infinite distance

States at infinite distance

I Distance among the ωψ(s)’s is infinite.

Proposition 19 (CW 2010)

d(ωψ(s1), ωψ(s2)) = +∞, ∀s1, s2 ∈]1, 5
4 [∪] 5

4 ,
3
2 ], s1 6= s2.

Proof.

Repeated use of mean value theorem to obtain estimates of
|ωψ′(â(m0))− ωψ(â(m0))|.

Proposition 20

For any state, there is at least another state which is at infinite distance.
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DISCUSSION Consequences

Consequences

II Topology induced by the spectral distance d on space of states of Ā not the
weak * topology.

I Weak* Topology : Basic condition to have Compact Quantum Metric Spaces
(CQMS) as defined by Rieffel

I Spectral Triple proposed by [Gayral et al., 2004] built from (A,H,D) is of
course not CQMS (proposed as NC analog of non compact Riemann spin
geometry).

I Notice: Unitalization of (A,H,D) in [Gayral et al., 2004] uses A1: algebra of
bounded functions with all bounded derivatives. (A1,H,D) is not CQMS,
despite A1 unital.

I Could one ”truncate“ the spectral triple to get a CQMS? Not sufficient to
have finite dimensional algebra: Spectral triple of
[Iochum,Krajewski,Martinetti, 2001] built from M2(C) with different D is not
CQMS. Recall corresponding spectral distance on S2 is infinite for pure states
(points) at different ”altitude“.
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Truncation of the Moyal Triple

Set AN := MN(C). Inner product < a, b >θ= 2πθTr(a†b).

Proposition 21

The following data define a spectral triple (AN ,HN = MN(C)⊗ C2,DN),
∂a = −[X−, a], ∂̄a = [X+, a]

X− :=
1√
θ


0 0 0 . . . 0
1 0 0 . . . 0

0
√

2 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0
√

n − 1 0

 , X+ := X t
−. (11)

For N → +∞, one recovers D.
Re-express the spectral distance.

d(ωA, ωB) = sup
a∈VN

{
|ωA(a)− ωB(a)|, ||∂a||≤

1√
2

}
:= d(A,B) (12)

A1,A2 ∈ S(AN) = {A ∈ A+
N , Tr(A) = 1}, VN = {a self-adjoint, traceless},

ωA(a) = Tr(Aa)
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Equivalent distances

Define ∆(A,B) := ||A− B||L2 , ||A||2L2 :=< A,A >

Proposition 22

d(A,B) and ∆(A,B) are equivalent.

Proof.

Observe: i) ∆(A,B) = supa∈VN
(|ωA(a)− ωB(a)|, ||a||L2 ≤ 1); ii) ||.||op and ||||L2

are equivalent norms on VN

Lemma 23 (CDMW 2009)

(AN ,HN = MN(C)⊗ C2,DN) defines a CQMS.

Proof.

∆(A,B) induces weak* topology on S(AN).

30



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

DISCUSSION A spectral distance on the 2-sphere

Exemple: Spectral distance on the 2-sphere

Α
x�Φ

x�Φ¢
eq

x�Φ¢

Proposition 24

d(ωφ, ωφ′) = cosαdeucl(xφ, xφ′) for α ≤ π
4

d(ωφ, ωφ′) = 1
2 sinαdeucl(xφ, xφ′) for α ≥ π

4
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Derivation-based differential calculus and Moyal
gauge theory

I A =M, Left-A module M =M. Der(M) =Int(M). One has ∂µ = i [ξµ, ]?,
ξµ = −Θ−1

µν xν . General framework: derivation based differential calculus

[Connes 1980, Dubois-Violette 1986]: {∂µ}. Let d̂ the differential.
I Connection defined by ∇ : Ω0 → Ω1, ∇a = d̂a + Aa, A ∈ Ω1. Hermitian

connection: Xh(a1, a2) = h(∇X (a1), a2) + h(a1,∇X (a2)), ∀a1, a2 ∈M,

∀X ∈Der(M), with h0(a1, a2) = a†1a2. Set ∇X (I) := −iAµ. Curvature

F (a) = (d̂A + AA)a, F (X ,Y )a = ([∇X ,∇Y ]−∇[X ,Y ])a. Unitary gauge group
U(M) ⊂Aut(M), h(ag

1 , a
g
2 ) = h(a1, a2).

I A simple Lemma [e.g Cagnache,Masson, Wallet 2008]: Assume ∃η ∈ Ω1

d̂a = [η, a], ∀a ∈ Ω•. Then ∇inv := d̂a− ηa defines a connection. It is
invariant under unitary gauge transformations. The ”covariant coordinates“
are nothing but the tensor 1-form defined by A := ∇−∇inv = A + η.

I 4-d Candidate action for renormalisable gauge theory on Moyal space [de

Goursac,Wallet,Wulkenhaar 2007]: Curvature is
Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ]? = i [Aµ,Anu]−Θ−1

µν

S =

∫
d4x(αFµν ? Fµν + ω{Aµ,Aν}2

? + κAµ ?Aµ)
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Gauge theory on Moyal space
I Vacuum configuration (2-d and 4-d) highly non trivial when action is not

regarded as a matrix model (Situation prefered by physicists!).

Proposition 25 (de Goursac, Wallet 2008)

The vacuum configuration in 4 dimensional case is

A0
µ(x) = 2

√
2θ

ez/2

z

∫ ∞
t=0

e−tJ2(2
√

tz)
∞∑

m=0

(−1)m

m!

√
vm+1tm+1(x̃µ cos(ξm)+

2

θ
sin(ξm))

(13)

where vm and ξm defined in EPJC 2008 and z = 2x2

θ .

I Derivation based differential calculus can be extended to Z2-graded case
(Wallet 2008). Yields interesting exemple of gauge theory constructed from
(A =M⊕M, •) and differential calculus based on derivations generated by
polynomials of d0 ≤ 2 of one M suitably completed to make a Lie algebra of
derivations of A.

Proposition 26 (Wallet 2008)

The renormalisable 4-d ϕ4 theory is a truncation of a gauge theory built from the
above differential calculus.
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Remark

I Equivalence classes:

Definition 27

For any states ω1 and ω2, denote by ≈ the equivalence relation
ω1 ≈ ω2 ⇐⇒ d(ω1, ω2) < +∞. [ω] denotes the equivalence class of ω.

I Several equivalence classes: [ωn] = [ω0], ∀n ∈ N. [ωΛ] = [ω0]. In view of
Proposition 18 and Proposition 19, [ωψ(s1)] 6= [ω0], ∀s1 ∈]1, 3

2 ], and

[ωψ(s1)] 6= [ωψ(s2)], ∀s1, s2 ∈]1, 5
4 [∪] 5

4 ,
3
2 ], s1 6= s2.

I Therefore, uncountable infinite family of equivalence classes.

I Existence of several distinct equivalent classes implies that there is no state
that is at finite distance to all other states.

Proposition 28

For any state, there is at least another state which is at infinite distance.

I This latter property applies to pure and non pure states.
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Compact Quantum Metric Space

Rieffel observation: Let commutative compact metric space (X , ρ). Lipschitz semi
norm l(f ) on A := C (X ). Then, one can define on S(A) a distance
ρl(ω1, ω2) = sup(|(ω1 − ω2)(f )), l(f ) ≤ 1) such that
lim ρl(ωn, ω) = 0 ⇐⇒ lim(ωn(f )− ω(f )) = 0, ∀f ∈ A.

Definition 29 (Rieffel, Contemp. Math. 2004)

A Compact Quantum Metric Space (CQMS) is a order unit space A equiped with
a seminorm l such that l(1) = 0 and the distance defined by

d(ω1, ω2) = sup
(
|ω1 − ω2(a)|, / l(a) ≤ 1

)
(14)

induced the weak* topology on the state space of A.

I Order unit space: linear sp. of self-adjoint operators on some H with unit.
State notion extend to this space.

I Spectral distance: sup is reached on self-adjoint elements.

I Therefore: unital spectral triple whose spectral distance induces weak*
topology on S(A) : CQMS.
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The space of pure states - Proof

Proof.

We work with Ā.
To show ωψ’s are pure and that all pure states are of this kind: show that Ā is
(isometrically) isomorphic to algebra of compact operators K(G0), since by
[Kadison, 10.4.4, II, p.750] K(G0) is set of vector states of G0, actually defined in
the proposition.
i) Use GNS representation {πm,Hm} induced by ωmn.
Since (a∗a)pq =

∑
l ālpalq, the left kernel Nm of ωmn is the ideal generated by

{fpq}p∈N,q∈N/{m} so that Hm := Ā/Nm = Gm.. As GNS repres. faithful, Ā is

*-isomorphic and so isometrically isomorphic (any injective C* morphism is
isometric) to the C∗-algebra πm(Ā) ⊂ B(Hm).
ii) Let I, the set of finite rank operators on K(G0). For any fpq, πm(fpq) ∈ I. So
any finite rank operator can be written as a finite sum of fpq. Therefore,

I ⊂ πm(Ā), hence Ī := K(G0) ⊂ πm(A) = πm(Ā).
iii) Conversely, πm(Ā) ⊂ K(G0) (use matrix base to show La is Hilbert-Schmidt on
G0, therefore compact. Therefore, one has Ā = K(G0). The result follows.

Back
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GAUGE THEORIES ON MOYAL SPACES: RESULTS Derivation-based differential calculus

Technical Lemma - Proof

Proof.

If ||[D, π(a)]||op ≤ 1, then ||∂a||op ≤ 1√
2

and ||∂̄a||op ≤ 1√
2

. Use matrix base: for

any ϕ ∈ H0, ||∂a ? ϕ||22 = 2πθ
∑

m,n |
∑

p αmpϕpn|2. From def. of ||∂a||op, one get∑
m,n |

∑
p αmpϕpn|2 ≤ 1

4πθ for any ϕ ∈ H0 with
∑

m,n |ϕmn|2 = 1
2πθ . Then

|
∑

p

αmpϕpn| ≤
1

2
√
πθ
, ∀ϕ ∈ H0, ||ϕ||2 = 1, ∀m, n ∈ N (15)

(same for βmn). Now, |
∑

p αmpϕpn| ≤ 1
2
√
πθ

true for any ϕ ∈ H0 with ||ϕ||2 = 1¿

One can construct ϕ̃ with ||ϕ̃||2 = ||ϕ||2 via αmpϕ̃pn = |αmp||ϕpn|. Then∑
p

|αmp||ϕpn| ≤
1

2
√
πθ
, ∀ϕ ∈ H0, ||ϕ||2 = 1, ∀m, n ∈ N (16)

Notice that (16) implies (15). Similar considerations apply for the βmn’s. The
property i) follows.
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Technical Lemma - Proof II

Proof.

To prove ii): observe that if a is radial, one has αmn = 0 if m 6= n + 1 (from matrix
base). Then, for any unit vector ψ ∈ H0

||∂a ? ψ||22 = 2πθ
∑
p,q

|
∑

r

αprψrq|2 = 2πθ
∑
p,q

|αp,p−1ψp−1,q|2 ≤ πθ
∑

p,q∈N
|ψpq|2

(17)
so that ||∂a||2op ≤ 1

2 showing that a is in the unit ball.
To prove that â(m0) ∈ A defines a positive operator of B(H) for any fixed m0 ∈ N,
show: < ψ, π(â(m0))ψ >≥ 0, ∀ψ ∈ H, for any fixed m0 ∈ N. Set ψ = (ϕ1, ϕ2),
ϕi ∈ L2(R2), i = 1, 2 and ϕi =

∑
m,n∈N ϕ

i
mnfmn. A matter of standard calculation.

Finally, notice that any positive element a ∈ A+ verifies a† = a so that
(∂a)† = ∂̄a. Therefore ||[D, π(a)]||op =

√
2||∂a||op. Now, standard calculation

shows that the only non-vanishing coefficients α̂pq in the expansion of ∂â(m0)
satisfy α̂p+1,p = − 1√

2
, 0 ≤ p ≤ m0, for any fixed m0 ∈ N. From the very definition

of ||.||op, one infers that ||∂â(m0)||op = 1√
2

(use for instance (17)). Therefore, one

obtains ||[D, π(â(m0))]||op = 1 for any m0 ∈ N.

Back
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Properties of (S, ?))

Theorem 30 (see Gracia-Bondia, Varilly, 1988)

(S, ?) is a non unital associative involutive Fréchet algebra with faithful trace and
jointly continuous product.

Proof.

I I Associativity and faithfull trace standard

I Continuity of ? in the product topology in S: use estimate ||a ? b||∞ ≤ ||a||1||b||1.

I Then: prove estimates for xα∂β(a ? b), ∀α, β ∈ N2. One get: ? is continuous in S
separately so it is jointly because S is Fréchet.
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Properties of (S, ?)) - II

I ?-product can be extended to other subspaces of S ′ (use duality and
continuity of ? on S).

I Convenient: Hilbert spaces S ⊂ Gs,t ⊂ S ′, s, t ∈ R,
Gs,t = {a =

∑
amnfmn ∈ S ′ / ||a||2s,t =

∑
m,n θ

s+t(m+ 1
2 )s(n+ 1

2 )t |amn|2 <∞}
I Uses: ||a ? b||s,r ≤ ||a||s,t ||b||q,r , t + q ≥ 0 and ||a||u,v ≤ ||a||s,t if u ≤ s,

v ≤ t.

I Then, for any a ∈ Gs,t and b ∈ Gq,r , b =
∑

m,n bmnfmn, t + q ≥ 0, the
sequences cmn =

∑
p ampbpn, ∀m, n ∈ N define the functions

c =
∑

m,n cmnfmn, c ∈ Gs,r [See e.g Gracia-Bondia, Varilly, JMP 1988].

Back
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The noncommutative torus

Definition 31 (For reviews see, e.g Landi, Gracia-Bondia, Varilly)

A2
θ universal C*-algebra generated by u1, u2 with u1u2 = e i2πθu2u1. Algebra of the

noncommutative torus T2
θ is the dense (unital) pre-C* subalgebra of A2

θ defined by

T2
θ = {a =

∑
i,j∈Z aiju

i
1uj

2 / supi,j∈Z(1 + i2 + j2)k |aij |2 <∞}.

I Weyl generators defined by UM ≡ e−iπm1θm2 um1
1 um2

2 , ∀M = (m1,m2) ∈ Z2.
For any a ∈ T2

θ, a =
∑

m∈Z2 aMUM . Let δ1 and δ2: canonical derivations
δa(ub) = i2πuaδab, ∀a, b ∈ {1, 2}. One has δb(a∗) = (δb(a))∗, ∀b = 1, 2.

Proposition 32

One has for any M,N ∈ Z2, (UM)∗ = U−M , UMUN = σ(M,N)UM+N where the
commutation factor σ : Z2 × Z2 → C satisfies

σ(M +N,P) = σ(M,P)σ(N,P), σ(M,N +P) = σ(M,N)σ(M,P), ∀M,N,P ∈ Z2

σ(M,±M) = 1, ∀M ∈ Z2

δa(UM) = i2πmaUM , ∀a = 1, 2, ∀M ∈ Z2
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The noncommutative torus
I Let τ be tracial state:

For any a =
∑

M∈Z2 aMUM ∈ T2
θ, τ : T2

θ → C, τ(a) = a0,0.

I Hτ : GNS Hilbert space (completion of T2
θ in the Hilbert norm induced by

< a, b >≡ τ(a∗b)). One has τ(δb(a)) = 0, ∀b = 1, 2.
I The even real spectral triple:

(T2
θ,H,D; J, Γ)

H = Hτ ⊗ C2. One has δ†b = −δb, ∀b = 1, 2, in view of

< δb(a), c >= τ((δb(a)∗c) = τ(δb(a∗)c) = −τ(a∗δb(c)) = − < a, δb(c) > for any b = 1, 2

and δb(a∗) = (δb(a))∗.
I Define δ = δ1 + iδ2 and δ̄ = δ1 − iδ2. D: unbounded self-adjoint Dirac

operator D = −i
∑2

b=1 δb ⊗ σb, densely defined on
Dom(D) = (T2

θ ⊗ C2) ⊂ H.

D = −i

(
0 δ
δ̄ 0

)
I Faithfull representation π : T2

θ → B(H) : π(a) = L(a)⊗ I2,
π(a)ψ = (aψ1, aψ2), ψ = (ψ1, ψ2) ∈ H, ∀a ∈ T2

θ. L(a): left multiplication
operator by any a ∈ T2

θ. π(a) and [D, π(a)] bounded on H for any T2
θ.

[D, π(a)]ψ = −i(L(δb(a))⊗ σb)ψ = −i

(
L(δ(a)) 0

0 L(δ̄(a))

)(
ψ2

ψ1

)
(18)

44



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

Noncommutative Torus - preliminaries basic properties

The noncommutative torus
I Let τ be tracial state:

For any a =
∑

M∈Z2 aMUM ∈ T2
θ, τ : T2

θ → C, τ(a) = a0,0.
I Hτ : GNS Hilbert space (completion of T2

θ in the Hilbert norm induced by
< a, b >≡ τ(a∗b)). One has τ(δb(a)) = 0, ∀b = 1, 2.

I The even real spectral triple:

(T2
θ,H,D; J, Γ)

H = Hτ ⊗ C2. One has δ†b = −δb, ∀b = 1, 2, in view of

< δb(a), c >= τ((δb(a)∗c) = τ(δb(a∗)c) = −τ(a∗δb(c)) = − < a, δb(c) > for any b = 1, 2

and δb(a∗) = (δb(a))∗.
I Define δ = δ1 + iδ2 and δ̄ = δ1 − iδ2. D: unbounded self-adjoint Dirac

operator D = −i
∑2

b=1 δb ⊗ σb, densely defined on
Dom(D) = (T2

θ ⊗ C2) ⊂ H.

D = −i

(
0 δ
δ̄ 0

)
I Faithfull representation π : T2

θ → B(H) : π(a) = L(a)⊗ I2,
π(a)ψ = (aψ1, aψ2), ψ = (ψ1, ψ2) ∈ H, ∀a ∈ T2

θ. L(a): left multiplication
operator by any a ∈ T2

θ. π(a) and [D, π(a)] bounded on H for any T2
θ.

[D, π(a)]ψ = −i(L(δb(a))⊗ σb)ψ = −i

(
L(δ(a)) 0

0 L(δ̄(a))

)(
ψ2

ψ1

)
(18)

44



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

Noncommutative Torus - preliminaries basic properties

The noncommutative torus
I Let τ be tracial state:

For any a =
∑

M∈Z2 aMUM ∈ T2
θ, τ : T2

θ → C, τ(a) = a0,0.
I Hτ : GNS Hilbert space (completion of T2

θ in the Hilbert norm induced by
< a, b >≡ τ(a∗b)). One has τ(δb(a)) = 0, ∀b = 1, 2.

I The even real spectral triple:

(T2
θ,H,D; J, Γ)

H = Hτ ⊗ C2. One has δ†b = −δb, ∀b = 1, 2, in view of

< δb(a), c >= τ((δb(a)∗c) = τ(δb(a∗)c) = −τ(a∗δb(c)) = − < a, δb(c) > for any b = 1, 2

and δb(a∗) = (δb(a))∗.

I Define δ = δ1 + iδ2 and δ̄ = δ1 − iδ2. D: unbounded self-adjoint Dirac
operator D = −i

∑2
b=1 δb ⊗ σb, densely defined on

Dom(D) = (T2
θ ⊗ C2) ⊂ H.

D = −i

(
0 δ
δ̄ 0

)
I Faithfull representation π : T2

θ → B(H) : π(a) = L(a)⊗ I2,
π(a)ψ = (aψ1, aψ2), ψ = (ψ1, ψ2) ∈ H, ∀a ∈ T2

θ. L(a): left multiplication
operator by any a ∈ T2

θ. π(a) and [D, π(a)] bounded on H for any T2
θ.

[D, π(a)]ψ = −i(L(δb(a))⊗ σb)ψ = −i

(
L(δ(a)) 0

0 L(δ̄(a))

)(
ψ2

ψ1

)
(18)

44



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

Noncommutative Torus - preliminaries basic properties

The noncommutative torus
I Let τ be tracial state:

For any a =
∑

M∈Z2 aMUM ∈ T2
θ, τ : T2

θ → C, τ(a) = a0,0.
I Hτ : GNS Hilbert space (completion of T2

θ in the Hilbert norm induced by
< a, b >≡ τ(a∗b)). One has τ(δb(a)) = 0, ∀b = 1, 2.

I The even real spectral triple:

(T2
θ,H,D; J, Γ)

H = Hτ ⊗ C2. One has δ†b = −δb, ∀b = 1, 2, in view of

< δb(a), c >= τ((δb(a)∗c) = τ(δb(a∗)c) = −τ(a∗δb(c)) = − < a, δb(c) > for any b = 1, 2

and δb(a∗) = (δb(a))∗.
I Define δ = δ1 + iδ2 and δ̄ = δ1 − iδ2. D: unbounded self-adjoint Dirac

operator D = −i
∑2

b=1 δb ⊗ σb, densely defined on
Dom(D) = (T2

θ ⊗ C2) ⊂ H.

D = −i

(
0 δ
δ̄ 0

)

I Faithfull representation π : T2
θ → B(H) : π(a) = L(a)⊗ I2,

π(a)ψ = (aψ1, aψ2), ψ = (ψ1, ψ2) ∈ H, ∀a ∈ T2
θ. L(a): left multiplication

operator by any a ∈ T2
θ. π(a) and [D, π(a)] bounded on H for any T2

θ.

[D, π(a)]ψ = −i(L(δb(a))⊗ σb)ψ = −i

(
L(δ(a)) 0

0 L(δ̄(a))

)(
ψ2

ψ1

)
(18)

44



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

Noncommutative Torus - preliminaries basic properties

The noncommutative torus
I Let τ be tracial state:

For any a =
∑

M∈Z2 aMUM ∈ T2
θ, τ : T2

θ → C, τ(a) = a0,0.
I Hτ : GNS Hilbert space (completion of T2

θ in the Hilbert norm induced by
< a, b >≡ τ(a∗b)). One has τ(δb(a)) = 0, ∀b = 1, 2.

I The even real spectral triple:

(T2
θ,H,D; J, Γ)

H = Hτ ⊗ C2. One has δ†b = −δb, ∀b = 1, 2, in view of

< δb(a), c >= τ((δb(a)∗c) = τ(δb(a∗)c) = −τ(a∗δb(c)) = − < a, δb(c) > for any b = 1, 2

and δb(a∗) = (δb(a))∗.
I Define δ = δ1 + iδ2 and δ̄ = δ1 − iδ2. D: unbounded self-adjoint Dirac

operator D = −i
∑2

b=1 δb ⊗ σb, densely defined on
Dom(D) = (T2

θ ⊗ C2) ⊂ H.

D = −i

(
0 δ
δ̄ 0

)
I Faithfull representation π : T2

θ → B(H) : π(a) = L(a)⊗ I2,
π(a)ψ = (aψ1, aψ2), ψ = (ψ1, ψ2) ∈ H, ∀a ∈ T2

θ. L(a): left multiplication
operator by any a ∈ T2

θ. π(a) and [D, π(a)] bounded on H for any T2
θ.

[D, π(a)]ψ = −i(L(δb(a))⊗ σb)ψ = −i

(
L(δ(a)) 0

0 L(δ̄(a))

)(
ψ2

ψ1

)
(18)

44



Moyal spaces: Metric and differential aspects, LMAM, Metz, 8 April 2010 Jean-Christophe Wallet, LPT-Orsay

Noncommutative Torus - preliminaries Pure states on noncommutative torus

Pure states on noncommutative torus
I Classification of the pure states in the irrational case is lacking.

I Consider rational case: θ = p
q , p < q, p and q relatively prime, q 6= 1. Set

T2
p
q
≡ Tp/q [see e.g Connes, Landi, Rieffel]. Unitary equivalence classes of irreps. Tp/q

classified by a torus parametrized by (α, β). Irreps. given by πα,β : Tp/q → Cq , α, β ∈ C
unitaries and πα,β(u1), πα,β(u2) ∈ Mq(C) are the usual clock and shift matrices in the basis

defined by
˘
ek = β−k/quk

2 e0

¯
, ∀k ∈ {0, 1, ..., q − 1} and u1e0 = α1/qe0.

Proposition 33

The set of pure states of the rational noncommutative torus is exactly the set of
vector states ωψα,β : Tp/q → C

ωψα,β(a) = (ψ, πα,β(a)ψ), ∀ψ ∈ Cq, ||ψ|| = 1 (19)

where ψ is given up to an overall phase. The pure states are then classified by a
bundle over a commutative torus parametrized by (α, β) with fiber P(Cq).

Proof.

By standard results on C*-algebras, any irrep. (πα,β ,Cq) is unitarily equivalent to the GNS

representation (ωψ , πα,β) for any ψ ∈ Cq . Then, the ωψ are pure states. Write now

ωψα,β(a) = (ψ, πα,β(a)ψ) for any a ∈ Tp/q .
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Preliminary results - Spectral distance on NC Torus

I One has

Lemma 34

Set δ(a) =
∑

N∈Z2 αNUN . One has αN = i2π(n1 + in2)aN , ∀N = (n1, n2) ∈ Z2.
i) For any a in the unit ball, ||[D, π(a)||op ≤ 1 implies |αN | ≤ 1, ∀N ∈ Z2. Similar
results hold for δ̄(a).

ii) The elements âM ≡ UM

2π(m1+im2) verify ||[D, π(âM)||op = 1, ∀M = (m1,m2) ∈ Z2,

M 6= (0, 0)

I Indeed

Proof.

The relation involving αN obvious. Then, ||[D, π(a)||op ≤ 1 is equivalent to ||δ(a)||op ≤ 1 and

||δ̄(a)||op ≤ 1 in view of (18). For any a ∈ A2
θ and any unit ψ =

P
N∈Z2 ψNUN ∈ Hτ , one has

||δ(a)ψ||2 =
P

N∈Z2 |
P

P∈Z2 αPψN−Pσ(P,N)|2. Then ||δ(a)||op ≤ 1 implies

|
P

P∈Z2 αPψN−Pσ(P,N)| ≤ 1, for any N ∈ Z2 and any unit ψ ∈ Hτ . By a straighforward

adaptation of the proof carried out for ii) of Lemma ??, this implies |αM | ≤ 1, ∀M ∈ Z2. This

proves ii). Finally, iii) stems simply from an elementary calculation.
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Preliminary results - Spectral distance on NC Torus

I The following proerty holds

Proposition 35

Let the familly of unit vectors ΦM = ( 1+UM
√

2
, 0) ∈ H, ∀M ∈ Z2, M 6= (0, 0)

generating the family of vector states of T2
θ

ωΦM
: T2

θ → C, ωΦM
(a) ≡ (ΦM , π(a)ΦM)H =

1

2
< (1 + UM), (a + aUM) > (20)

The spectral distance between any state ωΦM
and the tracial state is

d(ωΦM
, τ) =

1

2π|m1 + im2|
, ∀M = (m1,m2) ∈ Z2, M 6= (0, 0) (21)

I Sketch

Proof.

Set a =
P

N∈Z2 aNUN . Using Proposition 32 yields ωΦM
(a) = τ(a) + 1

2
(aM + a−M). This,

combined with Lemma 34 yields d(ωΦM
, τ) ≤ 1

2π|m1+im2|
. Upper bound obviously saturated by

the element âM of iii) of Lemma 34 which belongs to the unit ball.
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