
About the inversion of the

Dirac operator
Version 1.3

Abstract

In this note we would like to specify a bit what is done when we invert the5

Dirac operator in lattice QCD.

Contents

1 Introductive remark 2

2 Notations 3

2.1 The gauge fields and gauge configurations 4
2.2 General properties of the Dirac operator matrix 55

2.3 Wilson-twisted Dirac operator . 6

3 Even-odd preconditionning 9

3.1 implementation of even-odd preconditionning 10
3.1.1 Conjugate Gradient . 11

4 Inexact deflation 1510

4.1 Deflation method . 15
4.2 Deflation applied to the Dirac Operator 16
4.3 Deflation FAPP . 16
4.4 Deflation : theory . 18

4.4.1 Some properties of PR and PR 1815

4.4.2 The Little Dirac Operator 19

5 Mathematic tools 20

6 Samples from ETMC codes 22

1

Chapter 1

Introductive remark

The inversion of the Dirac operator is an important step during the building
of a statistical sample of gauge configurations: indeed in the HMC algorithm
it appears in the expression of what is called ”the fermionic force” used to5

update the momenta associated with the gauge fields along a trajectory. It is
the most expensive part in overall computation time of a lattice simulation with
dynamical fermions because it is done many times.
Actually the computation of the quark propagator, i.e. the inverse of the Dirac
operator, is already necessary to compute a simple 2pts correlation function from10

which one extracts a hadron mass or its decay constant: indeed that correlation
function is roughly the trace (in the matricial language) of the product of 2 such
propagators.

2

Chapter 2

Notations

We are interested in the study of strong interaction, one of the 4 forces governing
the Universe. In the Standard Model, the matter fields sensitive to the strong
interaction are quarks; those particles have a spin 1/2. They are described5

by ”Dirac spinors” i.e. 4-D complex vectors. The space in which The Dirac
operator is written in a vector space which is the tensor product of three (six)
vector spaces.

• The ”spin space”, S, which is a 4-dimension complex vector space. The
vector of this space are called ”spinors”. In this space are defined ”gamma
matrices” which are constant 4*4 hermitian matrices. There are 4 gamma
matrices corresponding to the four space-time directions: γx, γy, γz, γt of-
ten written in the same order as γ1, γ2, γ3, γ4. γ4 is sometimes named γ0.
A γ5 is also used. They verify the properties

γ2
µ = I4×4, γµγν + γνγµ = 2δµνI4×4 (2.1)

for µ, ν = 1, 4 where I4×4 is the identity 4*4 matrix.
click to see the ”gamma matrices” .10

• The ”color space”, C, which is a 3-dimension complex vector space.
In this space are defined the gluon field matrices (or ”gauge matrices) U
which are SU(3) matrices id est special unitary 3*3 matrices. One such
U matrix is defined on every link of the lattice. Contrary to the gamma
matrices these U matrices change from link to link and many times during15

the runs. The Dirac operator in this ”color” space is governed by these U
matrices as we shall see.

• The lattice space, V of dimension N (the number of lattice sites). This
space itself is a tensor product of the X space of dimension Lx (length
of the lattice in the direction x), Y space of dimension Lx (length of the
lattice in the direction y), Z (dimension Lz) and T space (dimension Lt).
It results that N is the product

N = LxLyLzLt (2.2)

3

We may denote by p a generic site (or point) on the lattice of coordinates
(x, y, z, t). All these linear spaces are periodic, id est x ranges from 1 to
Lx but Lx + 1 = 1

The full vector space To summarize the total vector space in which the
Dirac operator acts is

W = S ⊗ C ⊗X ⊗ Y ⊗ Z ⊗ T (2.3)

of dimension 12N 1. Vectors of this space will be called quark fields (sometimes
one calls them ”Wilson vectors”). In the following we will note the quark fields
with the Greek letters φ, ψ, ω, ... Physicists use to write them ψa

α(p) but we
may as well to meet the request of our colleagues write them as

ψ(a, α, x, y, z, t) (2.4)

where a = 1, 3 labels the color space (we will always use latin letters a,b,c for
color), α = 1, 4 labels the spin space (we will always use greek letters α, β, , ...
for spin) and x = 1, Lx, y = 1, Ly etc label the site p on the lattice. The Dirac

operator is a 12N × 12N 2 matrix in the full vector space. It will be
written in general as

D(a, α, x, y, z, t; a′, α′, x′, y′, z′, t′) (2.5)

Or, in short-hand notations, D will represent the 12N × 12N matrix in the full
vector space. We will give a more detailed description of it below. For practical
use we now define in the full vector space

I12N×12N , and γ512N×12N (2.6)

which are the identity matrix in the full space and the the γ5 matrix in the spin
state times the identity in all other components of the tensor product Eq. (2.3).5

return-twist
return-implementation

2.1 The gauge fields and gauge configurations

Physicists usually denote the matrices by Uµ̂(p) for the matrix which is on the
link starting from the site p in the direction µ (µ = x or µ = y or z or t). In
other words Ux̂(p) is on the link between the point p of coordinate (x, y, z, t) and
the point p′, (x + 1, y, z, t). We could also write the matrix Ux̂(p) as U(p′, p).
The links are oriented. By definition

U(p′, p) ≡ U †(p, p′) (2.7)

1In the case of twisted quarks we write together the u and d quark into the isospon space.
This leads in fact to a twice larger dimension of the vector space, 24 ∗ N .

2In the case of twisted quarks it is a 24 ∗ N × 24N matrix.

4

We call ”gauge configuration” a generic function which, to every link of the
lattice, associates one SU(3) matrix according to the rule Eq. (2.7). The first

major step of lattice calculations is to generate a large sample of

gauge configurations according to a well defined probability law. In
the problem of the inversion the gauge configuration is given and does not change5

all along the computation. It has to be stored. Its size in bytes if 9 ∗ 16 ∗ 4 ∗N .
About 400kB for a lattice Lx = Ly = Lz = 24, Lt = 48

2.2 General properties of the Dirac operator ma-

trix

There are several forms of the Dirac operator on the lattice. All have their10

good and bad points, but all point towards the same limit in the continuum,
id est when the lattice spacing vanishes. To mention the most popular ones:
Wilson with the best variants called ”Wilson-clover” and ”Wilson-twisted” (the
one used by ETMC collaboration); Staggered; overlap; domain-wall. Let us
consider the Wilson class. The Dirac matrix is sparse. Indeed,15

D(a, α, x, y, z, t; a′, α′, x′, y′, z′, t′) = 0 except in nine cases:

• Same sites: x = x′, y = y′, z = z′, t = t′

• Nearest neighbours sites or hopping terms:

– x = x′ ± 1, y = y′, z = z′, t = t′,

– x = x′, y = y′ ± 1, z = z′, t = t′,20

– x = x′, y = y′, z = z′ ± 1, t = t′ and

– x = x′, y = y′, z = z′, t = t′ ± 1.

The routine ”Hopping Matrix” computes the action of these nearest neighbours
terms. Example of the Wilson-twisted Dirac operator

By ”Inversion” we mean inverting partially this matrix id est

solving a set of equations of the type

Dψ = η (2.8)

where D and η are given and ψ is unknown. D is a 12N × 12N complex matrix25

and η and ψ are 12N complex vectors. The solution is often called ”quark
propagator”. Computing these is the major goal for the first year of petaQCD.

5

2.3 Wilson-twisted Dirac operator

In the case of Wilson-twisted the quarks are associated within doublets. We
consider for example together the quarks ”u” and ”d”. In yhis example we
assume that they have the same mass. The doublet implies that now the Full
space of the Dirac operator is a tensor product

Wt = I ⊗ S ⊗ C ⊗X ⊗ Y ⊗ Z ⊗ T (2.9)

where the additional space, I is named ”isospin” and has dimensions 2. The
vector have two components, corresponding respectively to the u and d quark.
We will use only the identity matrix II in isopin space and the matrix

τ3 =

(

1 0
0 −1

)

(2.10)

The upper 1 acts on u quark the lower on d. return to even-odd implementation
The full vector space is now of dimension 24N . We write the Dirac operator

as

D(i, a, α, x, y, z, t; i′, a′, α′, x′, y′, z′, t′) (2.11)

where the new indices i, i′ = 1, 2 correspond to isospin. For the sake of simplicity
we will write the Dirac operator by block of dimension 12N × 12N each, the
blocks corresponding to the isospin.

D =

(

D+ 0
0 D−

)

(2.12)

This matrix by block is diagonal because we are in a special case in which we use
only the identity isospin matrix and the diagonal τ3, Eq. (2.10). In more complex5

cases the twisted Dirac operator contains also non-diagonal contributions in
isospin space, but we will not consider them now. The Dirac operator D+ (D−)
is the Dirac operator of the u (d) quark.

Now we define all the non zero matrix elements of the Dirac operator. We
will write the identity matrix IC , IS , Ix, Iy, Iz , It respectively for isospin, color,10

spin, x, y z t spaces. It is the tensor product of all the preceding ones.

• same site: x′ = x, y′ = y, z′ = z, t′ = t. This term can be written as

D±
samesite = I12N×12N ± 2iκµγ512N×12N (2.13)

where we have used these notations. κ is a parameter (typically between
0.1 and 0.2) of the run and µ is the quark mass in units of the lattice. The
quark mass is a small number (a few 10−3) for light quarks. It can also
be written as follows

D±
same site(a, α, x, y, z, t; i, a, α

′, x, y, z, t) = δαα′ ± 2iκµ(γ5)αα′ (2.14)

6

where the Kronecker symbol δαα′ vanishes until α = α′ and where we write
the matrix elements of τ3 and γ5 as indices of the matrix name in the order
line column. Notice that the color is trivial, identity in color space, and the
spin is matrix γ5 is the same on all sites. This makes this ”same-site” part
of Dirac operator rather trivial, which is used in the even-odd treatment.5

These terms can be found in the routine tm operators.c. see for example
mul one pm imu sub mul gamma5 . From now on we consider ”hopping
terms” i.e. interactions to the nearest neighbour. They are treated in the
routine Hopping Matrix.c.

10

• Case x′ = x− 1.

D±
x′=x−1 = −κ(I4×4 + γx) ⊗ U(p, p′) ⊗ Iy ⊗ Iz ⊗ It (2.15)

with the coordinates of p (p′) equal to x, y, z, t (x′ = x − 1, y, z, t). This
can also be written

D±
x′=x−1(a, α, x, y, z, t; i, a, α

′, x− 1, y, z, t) = −

κ(δαα′ + (γx)αα′)U(p, p′)a,a′ (2.16)

The color structure of this part is non trivial. It depends on the gauge
configuration. In an inversion the U(p, p′) do not change during the cal-
culation but they are different from one couple p, p′ to another q, q′. See
for instance the piece of code in Hopping Matrix.c.

• Case x′ = x+ 1.

D±
x′=x+1 = −κ(I4×4 − γx) ⊗ U(p, p′) ⊗ Iy ⊗ Iz ⊗ It (2.17)

with the coordinates of p (p′) equal to x, y, z, t (x′ = x + 1, y, z, t). This
can also be written

D±
x′=x+1(a, α, x, y, z, t; i, a, α

′, x− 1, y, z, t) = −

κ(δαα′ − (γx)αα′)U(p, p′)a,a′ (2.18)

• Case y′ = y ± 1

D±
y′=y±1(a, α, x, y, z, t; i, a, α

′, x, y′ = y ± 1, z, t) = −

κ(δαα′ ∓ (γy)αα′)U(p, p′)a,a′ (2.19)

with the coordinates of p (p′) equal to x, y, z, t (x, y′ = y ± 1, z, t).15

• Case z′ = z ± 1

D±
z′=z±1(a, α, x, y, z, t; i, a, α

′, x, y, z′ = z ± 1, t) = −

κ(δαα′ ∓ (γz)αα′)U(p, p′)a,a′ (2.20)

with the coordinates of p (p′) equal to x, y, z, t (x, y, z′ = z ± 1, t).

7

• Case t′ = t± 1

D±
t′=t±1(a, α, x, y, z, t; i, a, α

′, x, y, z, t′ = t± 1) = −

κ(δαα′ ∓ (γt)αα′)U(p, p′)a,a′ (2.21)

with the coordinates of p (p′) equal to x, y, z, t (x, y, z, t′ = t± 1).

All other matrix elements of the Dirac operator are zero. This is why the
Dirac operator is a sparce matrix. The number or matrix elements for one
isespin is equal to (4 ∗ 3)2 ∗N2. The number of non vanishing matrix elements
is 588 ∗N = 12 ∗N + 8 ∗ (4 + 4) ∗ 9 ∗N , where the first term is for the ”same5

site” and the second term is for the 8 directions, 4 + 4 for the sum of two Dirac
matrices times 9 for the generic SU(3) matrix.

return to general properties of Dirac operator

8

Chapter 3

Even-odd preconditionning

The lattice sites can be classified according to the parity of x+ y + z + t. The
”same-site” matrix elements of the Dirac operator relate stay into the same
parity. As already shown (see5

Wilson-twisted Dirac operator) they are very simple. The hopping terms relate
sites of opposite parity. The complexitty lies there. The vector space in which
the Dirac operator acts has dimension 12N . Separating the even and odd sites
we have two subspaces of dimension 12N/2. This is used to perform a precon-
ditioning named ”even-odd preconditioning. In the following we will write the10

Dirac operator by blocks according to this decomposition.
The general idea of preconditionning consists of multiplying both side of the

initial system like eq.(2.8) by a preconditionning (regular) matrix P to abtain
a new system : PDψ = Pη whose matrix PD is supposed to have a smaller
condition number |λmax/λmin| than the original one D.15

The Wilson action is such that only the nearest neighbours are concerned
by the interaction (the matrix is sparse) and we can rewrite eq.(2.8) as (we will
forget the color-spin indices from now)

(

D(ee) D(eo)
D(oe) D(oo)

)(

ψ(e)
ψ(o)

)

=

(

φ(e)
φ(o)

)

(3.1)

where e and o sets all the lattice sites which are ”even” and ”odd”. The size
of the subblocs is 12N/2 × 12N/2. For the Wilson and Wilson-twisted Dirac
operators, D(ee) and D(oo) are diagonal in the volume space. Consequently
those submatrices are very easy to invert. Multiplying both sides of Eq. (3.1)
by the preconditioning matrix

P =

(

D−1(ee) 0
−D(oe)D−1(ee) 1

)

(3.2)

9

We get

(

I6N×6N D(ee)−1D(eo)
0 D(oo) −D(oe)D(ee)−1D(eo)

)(

ψ(e)
ψ(o)

)

=

(

D(ee)−1φ(e)
φ(o) −D(oe)D(ee)−1φ(e)

)

(3.3)

This leads to Eq. (3.1) as

ψ(e) = D−1(ee)[φ(e) −D(eo)ψ(o)] (3.4)

simple to solve when D−1(ee) is simple, and

[D(oo) −D(oe)D−1(ee)D(eo)]ψ(o) = φ(o) −D(oe)D−1(ee)φ(e) (3.5)

where the right-hand side is again easy to compute, but inverting the matrix on
the left-hand side is non trivial. The auxiliary system to solve is then

D̂(oo)ψ(o) = φ′(o) (3.6)

where D̂(oo) = D(oo)−D(oe)D−1(ee)D(eo) and φ′(o) = φ(o)−D(oe)D−1(ee)φ(e).
We have diminished the size of the system to solve by 2. Note that it works only
because D(ee) is diagonal in space for Wilson (and Wilson-twisted) fermions.
note also that the even-odd preconditioning has a drawback, dixit Philippe: it
does not allow “multisolvers” i.e. codes which solve different quark masses in5

one stroke. We now show a practical implementation of the even-odd precondi-
tioning in the ETMC package.

3.1 implementation of even-odd preconditionning

In fact, the Wilson-twisted Dirac operator in the full 24N × (24N) vector space
is modified as follows :

(

Q+ 0
0 Q−

)

≡

(

γ512N×12N ×D+ 0
0 γ512N×12N ×D−

)

(3.7)

where we use the notations, Eq. (2.6).
We use the fact that the matrices D and Q are diagonal by block (τ3 is

diagonal in the isospin space). So the upper (lower) block of dimension 12N ×
(12N) corresponds to the u (d) quark. From Eq. (3.1) we get

Q± = γ512N×12N

(

D±
ee Deo

Doe D±
oo

)

(3.8)

=

(

γ56N×6ND
±
ee 0

γ56N×6NDoe γ56N×6N

)

(

I6N×6N (D±
ee)

−1
Deo

0
(

D±
oo −Doe (D±

ee)
−1
Deo

)

)

10

where the definition of γ56N×6N and I6N×6N are similar in the even/odd sub-
spaces to that of γ512N×12N and I12N×12N in the full space and where we have
multiplied Q by a preconditionning matrix

(

P+ 0
0 P−

)

γ512N×12N (3.9)

where P± is defined in Eq. (3.2) and where we use the fact that γ56N×6N

commutes with Dee, Doe, Deo, Doo. One can check that

γ512N×12N

(

(D±
ee)

−1
0

−D(oe)D−1(ee) I6N×6N

)

=

(

D±
ee 0

Doe I6N×6N

)−1

γ512N×12N(3.10)

Using the fact that

D±
ee = D±

oo = I6N×6N ± iµγ56N×6N (3.11)

and that (γ56N×6N)2 = I6N×6N one finds that the very simple result

(

D±
ee

)−1
=
(

D±
oo

)−1
=

1

1 + µ2

(

I6N×6N ∓ iµγ56N×6N

)

(3.12)

We have to solve Eq. (3.1) which amounts to

Q±

(

ψ(e)±

ψ(o)±

)

= γ512N×12N

(

φ(e)±

φ(o)±

)

(3.13)

From Eq. (3.8) and applying to both sides the r.h.s of Eq. (3.10) we are left
to solving

Q̂±ψ(o)± = γ56N×6N

(

φ(o)± −D(oe)
(

D±
ee

)−1
φ(e)±

)

(3.14)

where

Q̂± = γ56N×6N

(

D±
oo −Doe

(

D±
ee

)−1
Deo

)

ψ(e)± =
(

D±
ee

)−1
[γ56N×6Nφ(e)± −D(eo)ψ(o)±] (3.15)

We have used the fact that Doe and Deo are identaical for the u (+) and d (-)
quark. Notice that Q̂± is only defined on the odd sites. To solve Eq. (3.14) let
us consider the conjugate-gradiant algorithm.

3.1.1 Conjugate Gradient

5

So, we have to solve systems like

Q̂±X = φ′0 (3.16)

11

However, the Q̂± matrix does not have the needed proprieties to be solved by
the Conjugate Gradient (CG) algorithm. We thus solve the equation

Q̂+Q̂−X = Φ0, Φ0 = Q̂−φ
′
0 (3.17)

Since Q̂+Q̂− is Hermitian it can be made by conjugate gradient.
The general conjugate gradient algorithm (for a symmetric - or hermitian-

positive definite matrix), for a system Ax = b is the following. One can
shown that the solution of the initial system minimize the bilinear functionnal
J(u) = 1

2
(Au, u) − (b, u) ((., .) denoting a scalar product). This strictly convex5

functionnal has suited properties, in order to characterize a unique solution of
the minimization problem. Starting from any inial vector x0, the solution can
be written in terms of an orthogonal basis (dk) :

x− x0 =

n−1
∑

k=0

αkdk (3.18)

reporting into the functionnal ;

J(x) = J(x0) +

n−1
∑

k=0

αk(Ax0 − b, dk) +
1

2

n−1
∑

k=0

(αk)2(Adk, dk) (3.19)

Writing the vanishing of the derivates ∂J
∂αk , one get :10

x = x0 +

n−1
∑

k=0

αkdk = x0 +

n−1
∑

k=0

(b−Ax0, dk)

(Adk, dk)
dk (3.20)

From what the following algorithm can be deduced :

• initialization

r0 = b−Ax0

d0 = r0
(3.21)

• iterations

minimization step :

αk = (rk, rk)/(Adk, dk)
xk+1 = xk + αkdk

rk+1 = rk − αkAdk

(3.22)

computation of a new direction and orthogonalization :15

12

βk+1 = (rk+1, rk+1)/(rk, rk)
dk+1 = rk+1 + βk+1dk (3.23)

in HMC, the conjugate gradient (for hermitian matrices) is coded in the
method cg her (file /solver/cg her.c). The product matrix vector is referenced
by the pointer argument “matrix mult f”. For instance, cg her is called in
invert eo.c in the following manner :

5

iter = cg_her(Odd_new, g_spinor_field[DUM_DERI], max_iter, precision, rel_prec,

VOLUME/2, &Qtm_pm_psi, sub_evs_flag, 1000);

The product matrix by vector is coded in this case by : Qtm pm psi. The
code is the following :10

void Qtm_pm_psi(spinor * const l, spinor * const k){

/* Q_{-} */

Hopping_Matrix(EO, g_spinor_field[DUM_MATRIX+1], k);

mul_one_pm_imu_inv(g_spinor_field[DUM_MATRIX+1], -1.);

Hopping_Matrix(OE, g_spinor_field[DUM_MATRIX], g_spinor_field[DUM_MATRIX+1]);15

mul_one_pm_imu_sub_mul_gamma5(g_spinor_field[DUM_MATRIX], k, g_spinor_field[DUM_MATRIX],

/* Q_{+} */

Hopping_Matrix(EO, l, g_spinor_field[DUM_MATRIX]);

mul_one_pm_imu_inv(l, +1.);

Hopping_Matrix(OE, g_spinor_field[DUM_MATRIX+1], l);20

mul_one_pm_imu_sub_mul_gamma5(l, g_spinor_field[DUM_MATRIX], g_spinor_field[DUM_MATRIX+1

}

In the main loop of cg her one can recognize the CG algorithm :

/* main loop */

for(iteration=0;iteration<max_iter;iteration++){25

f(g_spinor_field[DUM_SOLVER+4], g_spinor_field[DUM_SOLVER+2]);

if((subtract_ev == 1) && (iteration%modulo == 0)) {

sub_lowest_eigenvalues(g_spinor_field[DUM_SOLVER+4], g_spinor_field[DUM_SOLVER+2],

}30

/* c=scalar_prod(&g_ev[0*VOLUME], g_spinor_field[DUM_SOLVER+4]);

printf("%e, %e\n",c.re,c.im); */

pro=scalar_prod_r(g_spinor_field[DUM_SOLVER+2], g_spinor_field[DUM_SOLVER+4], N);

/* Compute alpha_cg(i+1) */35

alpha_cg=normsq/pro;

/* Compute x_(i+1) = x_i + alpha_cg(i+1) p_i */

13

assign_add_mul_r(g_spinor_field[DUM_SOLVER], g_spinor_field[DUM_SOLVER+2], alpha_cg,

/* Compute r_(i+1) = r_i - alpha_cg(i+1) Qp_i */

assign_add_mul_r(g_spinor_field[DUM_SOLVER+1], g_spinor_field[DUM_SOLVER+4], -alpha_cg,

/* Check whether the precision is reached ... */5

err=square_norm(g_spinor_field[DUM_SOLVER+1], N);

if(g_debug_level > 0 && g_proc_id == g_stdio_proc) {

printf("cg_her: %d\t% 23.16e\n",iteration,err); fflush(stdout);

}

if(((err <= eps_sq) && (rel_prec == 0)) || ((err <= eps_sq*squarenorm) && (rel_prec ==10

if((subtract_ev == 1)){

assign_add_invert_subtracted_part(g_spinor_field[DUM_SOLVER], Q, 10, N);

}

assign(P, g_spinor_field[DUM_SOLVER], N);

f(g_spinor_field[DUM_SOLVER+2], P);15

diff(g_spinor_field[DUM_SOLVER+3], g_spinor_field[DUM_SOLVER+2], Q, N);

err = square_norm(g_spinor_field[DUM_SOLVER+3], N);

if(g_debug_level > 0 && g_proc_id == g_stdio_proc) {

printf("cg_her: true residue %d\t% 23.16e\t\n",iteration, err); fflush(stdout);

}20

g_sloppy_precision = 0;

return(iteration+1);

}

return to eo implementation25

14

Chapter 4

Inexact deflation

The deflation method is a general method to solve efficiently a linear system
with eigenvalues of small magnitude. It is somehow a generalization of the
preconditioning method.5

Let A be an invertible matrix, consider the linear system

Ax = b (4.1)

the preconditioning method amounts finding an invertible matrix P with the
property that PA is better conditioned that A (ie the conditioning number of
PA is lower) and to solve

PAx = Pb

This is easy to propose, but finding P is a big problem (I would suggest P =
A−1:)).

The deflation method use a projector P ie an operator satisfying P 2 = P
and therefore non invertible (except for the identity) and then solve

{

PAx = Pb

PAx = Pb
(4.2)

where P = 1 − P . Each of these two linear systems has an infinite number of
solutions, but it is still possible to reconstruct the solution of Eq. (4.1). Note
that it is quite paradoxical that solving the two non invertible systems (infinite10

condition number, see below) is more favorable than solving a single invertible
system (finite condition number).

4.1 Deflation method

Again let A be an invertible operator and PL a projector, P 2
L = PL there-

fore PL is not invertible (except the identity), there exists a projector PR such15

that PLA = APR. Indeed PR = A−1PLA, one has P 2
R = A−1PLAA

−1PLA =
A−1P 2

LA = A−1PLA = PR. We note PL = 1 − PL and PR = 1 − PR.

15

Consider the system

PLAx = Pb (4.3)

and let x1 be a solution, take y ∈ kerPR (ie PRy = 0)

PLA(x1 + y) = PLAx1 + PLAy

= Pb+APRy

= Pb

therefore x1 + y is also a solution : the system Eq. (4.3) has an infinite number
of solution.

Consider now x1 a solution of PLAx = PLb then

x = PRx+ PRx1

is the solution of Eq. (4.1). Indeed

Ax = APRx1 +APRx1 = PRAx1 + PRAx1 = PRb+ PRb = b

All the difficulty is to find a smart projector PL. This is what Luscher did [1],
and his paper is presented below.

4.2 Deflation applied to the Dirac Operator5

What is presented below is just a rephrasing of the Luscher paper [1]. First the
practical aspect are presented, the justification comes after. The key point is a
smart choice of the projector. The image of this projector is called the deflated
subspace and the restriction of the Dirac operator the restricted Dirac operator.
The restriction of the Dirac operator to the kernel of this projector is called the10

little Dirac operator.

4.3 Deflation FAPP

This paragraph should be enough to program the deflation algorithm as a recipe.
The aim is to solve the inhomogeneous Dirac equation.

Dψ = η

1. Divide the 4 dimensional lattice into Nb blocks,

2. Choose Ns random vectors ψ0,l (component iidd density ?) 1,

3. compute in some way ψl = ”D−1”ψ0,l (approximate and cheap inverse),15

1In subroutine solver/generate dfl subspace.c in HMC/ETMC package, v5.0;
random fields(Ns)

16

4. define the NsNbvectors ψb
l the restriction of ψl to the bth block (all com-

ponents for sites not in the bth block are set to zero). Note that it is not
necessary to use more memory than Nb × 12N 2

5. orthogonalize this NsNbvectors. Note than the Gram-Schmidt (or other
procedure) can be applied into the blocks separately since between blocks5

the orthogonality is automatic.

6. Compute the NsNb × NsNb matrix A, called little Dirac operator, with

entry Al′b′

lb =
〈

ψb
l

∣

∣D
∣

∣

∣ψb′

l′

〉

. Note that it requires not more than Ns

D−application and scalar product (there is some extra memory require-
ment for the sites of the boundaty of the block),10

7. Invert A, to a good accuracy,

8. compute |X〉 =
∑NsNb

k,l=1

(

A−1
)

kl
〈ψlη〉 |ψl〉(the index of the block has been

skipped for clarity). again only Ns scalar product are necessary,

9. find, iteratively (no other way !) one solution of the deflated Dirac operator
PLD, and apply PR to get a unique and well defined vector |Y 〉15

10. The desired solution is |X〉 + |Y 〉. That’s all folks!

Notes

• One has

PL |ψ〉 =

NbNs
∑

k;l=1

(

A−1
)

kl
〈ψlψ〉D |ψk〉 (4.4)

PR |ψ〉 =

NbNs
∑

k;l=1

(

A−1
)

kl
〈ψl|Dψ〉 |ψk〉 (4.5)

note that PR is much longer to apply than PL since D is applied NbNs

times, but PR is applied only once whereas PL is applied many times.

• Extra Memory : In addition to the memory for the standard procedure,20

one needs to store the 2Ns vectors |ψk〉, and D |ψk〉, and the NsNb×NsNb

matrix (little Dirac operator), together with some peanuts.

• Extra computation : Applying the deflated Dirac operator instead of the
Dirac operator implies NsNb extra scalar product. The little Dirac oper-
ator has to be inverted, and Nb extra scalar product must computed.25

2N being the number of sites of the lattice

17

4.4 Deflation : theory

In this paragraph we give the details of the proofs and explain why Eq. (4.4) and
Eq. (4.5) are good choices. Note PL and PR are the P and Q of the introduction,
and as usual PL = 1 − PL and PR = 1 − PR.

4.4.1 Some properties of PR and PR5

• Let us show that PL and PR , or equivalently PL and PR, are projectors

PL
2
|ψ〉 =

∑

k,l

(

A−1
)

kl

〈

ψl

(

∑

q,m

(

A−1
)

qm
〈ψmψ〉D |ψq〉

)〉

D |ψk〉

=
∑

k,l,q,m

(

A−1
)

kl

(

A−1
)

qm
〈ψmψ〉 〈ψl|Dψq〉D |ψk〉

=
∑

k,l,q,m

(

A−1
)

kl

(

A−1
)

qm
Al,q 〈ψmψ〉D |ψk〉

=
∑

k,l,m

(

A−1
)

kl

(

∑

q

Alq

(

A−1
)

qm

)

〈ψmψ〉D |ψk |ψ〉〉

=
∑

k,l,m

(

A−1
)

kl
δl,m 〈ψmψ〉D |ψk〉

= PL |ψ〉

where we have use the definition of the matrix A.

• PR is also a projector

PR
2
|ψ〉 =

∑

k,l

(

A−1
)

kl

〈

ψl|D

(

∑

q,m

(

A−1
)

qm
〈ψm|Dψ〉 |ψq〉

)〉

|ψk〉

=
∑

k,l,q,m

(

A−1
)

kl

(

A−1
)

qm
〈ψm|Dψ〉 〈ψl|Dψq〉 |ψk〉

=
∑

k,l,q,m

(

A−1
)

kl

(

A−1
)

qm
Alq 〈ψm|Dψ〉 |ψk〉

=
∑

k,l,m

(

A−1
)

kl
〈ψm|Dψ〉

(

∑

q

Alq

(

A−1
)

qm

)

|ψk〉

=
∑

k,l

(

A−1
)

kl
〈ψl|Dψ〉 |ψk〉

= PR |ψ〉

18

• Let’s now show that PLD = DPRor equivalently PLD = DPR

DPR |ψ〉 = D

∑

k;l=1

(

A−1
)

kl
〈ψl|Dψ〉 |ψk〉

=
∑

k;l=1

(

A−1
)

kl
〈ψl|Dψ〉D |ψk〉

= PLD |ψ〉

• Let’s show PPL = 0

PPL |ψ〉 = P

|ψ〉 −
∑

q,l

(

A−1
)

k,l
〈ψlψ〉D |ψl〉

=
∑

q

|ψq〉 〈ψq| |ψ〉 −
∑

q,k,l

|ψq〉 〈ψq|
(

A−1
)

k,l
〈ψlψ〉D |ψl〉

=
∑

q

|ψq〉 〈ψq| |ψ〉 −
∑

q,l

(

∑

k

Aq,k

(

A−1
)

k,l

)

〈ψlψ〉 |ψq〉

=
∑

q

|ψq〉 〈ψq| |ψ〉 −
∑

q,l

δq,l 〈ψlψ〉 |ψq〉

= 0

4.4.2 The Little Dirac Operator

This is the sytem
PLD |ψ〉 = PL |η〉 (4.6)

Consider the vector
|S〉 = D−1PL |η〉

it is esay to see that it is a solution of Eq. (4.6) (PLDD
−1PL |η〉 = PL |η〉).

Then as explained in section one has to apply the operator PR to |S〉. Note

that PRD
−1PL = D−1PL

2
= D−1PL is very easy to compute as

D−1PL |η〉 =
∑

k,l

(

A−1
)

k,l
〈ψlη〉 |ψk〉

19

Chapter 5

Mathematic tools

Definition of Gamma matrices

γt = γ4 = γ0 ≡

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

(5.1)

γx = γ1 ≡

0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

(5.2)

γy = γ2 ≡

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

(5.3)

γz = γ3 ≡

0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

(5.4)

γ5 ≡

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

(5.5)

return from γ5

20

There are other representations of the gamma matrices which have the same
properties. We will keep these ones.
Algebraic properties of the gamma matrices

For µ, ν,= 0, 3 (or identically µ, ν,= 1, 4) and using the shorthand notation
1 = I4×4

γµγν + γνγµ = δµν γµγ5 + γ5γµ = 0 γ2
5 = 1 whence

1±γ5

2

1∓γ5

2
= 0 1±γ5

2

1±γ5

2
= 1±γ5

2

1±γ5

2
γµ

1±γ5

2
= 0 1±γ5

2
γµ

1∓γ5

2
= 1±γ5

2
γµ (5.6)

where δµν is the Kronecker symbol 1. Notice that (1 ± γ5)/2 are complemen-
tary projectors in spin space. These are denoted “chirality projectors” with
(1 + γ5)/2 (respectively (1 − γ5)/2) is the projector on positive (respectively
negative) chirality.
return to notations5

Definition of SU(3)
The hermitian conjugate of a 3*3 complex matrix

U ≡

u11 u12 u13

u21 u22 u23

u31 u32 u33

 (5.7)

is defined by

U † ≡

u∗11 u∗21 u∗31
u∗12 u∗22 u∗32
u∗13 u∗23 u∗33

 (5.8)

where for any complex number z, z∗ is the complex conjugate (changed the sign
of the imaginary part). A matrix U is told to be unitary if

U † ∗ U = I3×3 (5.9)

where * denotes the matrix product and I3×3 is the identity 3*3 matrix. ”Special
unitary” means that furthermore the determinant of U equals 1.

These matrices can be stored in a reduced array, for example keepoing only
two lines allows to recompute the third line using the SU(3) properties. This10

is equivalent to store 12 floating point numbers. An even better choice is given
in http://www.ccs.tsukuba.ac.jp/workshop/EP09/, using only 8 floating point
numbers. Of course the gain in storage has to be balanced against the cost in
additional online computation. return to ”color space”
return to gauge configurations15

1δµν = 1 for µ = ν and δµν = 0 for µ 6= ν

21

Chapter 6

Samples from ETMC codes

void mul_one_pm_imu_sub_mul_gamma5(spinor * const l, spinor * const k,5

spinor * const j, const double _sign){

complex z,w;

int ix;

double sign=1.;

spinor *r, *s, *t;10

static su3_vector phi1, phi2, phi3, phi4;

if(_sign < 0.){

sign = -1.;

}15

z.re = 1.;

z.im = sign * g_mu;

w.re = 1.;

w.im = -sign * g_mu;20

#if (defined BGL3 && defined XLC)

__alignx(16,l);

__alignx(16,k);

__alignx(16,j);

#endif25

/************ loop over all lattice sites ************/

for(ix = 0; ix < (VOLUME/2); ix++){

r = k+ix;

s = j+ix;

t = l+ix;30

/* Multiply the spinorfield with 1+imu\gamma_5 */

#if (defined SSE22 || defined SSE32)

22

_prefetch_spinor((r+predist));

_prefetch_spinor((s+predist));

_sse_load_up((*r).s0);

_sse_vector_cmplx_mul(z);

_sse_load((*s).s0);5

_sse_vector_sub_up();

_sse_store_nt_up((*t).s0);

_sse_load_up((*r).s1);

_sse_vector_cmplx_mul_two();

_sse_load((*s).s1);10

_sse_vector_sub_up();

_sse_store_nt_up((*t).s1);

_sse_load_up((*r).s2);

_sse_vector_cmplx_mul(w);

_sse_load((*s).s2);15

_sse_vector_sub();

_sse_store_nt_up((*t).s2);

_sse_load_up((*r).s3);

_sse_vector_cmplx_mul_two();

_sse_load((*s).s3);20

_sse_vector_sub();

_sse_store_nt_up((*t).s3);

#else

_complex_times_vector(phi1, z, (*r).s0);

_complex_times_vector(phi2, z, (*r).s1);25

_complex_times_vector(phi3, w, (*r).s2);

_complex_times_vector(phi4, w, (*r).s3);

/* Subtract s and store the result in t */

/* multiply with gamma5 included by */

/* reversed order of s and phi3|4 */30

_vector_sub((*t).s0, phi1, (*s).s0);

_vector_sub((*t).s1, phi2, (*s).s1);

_vector_sub((*t).s2, (*s).s2, phi3);

_vector_sub((*t).s3, (*s).s3, phi4);

#endif35

}

}

return to Wilson-twisted Dirac operator

/* $Id: Hopping_Matrix.c,v 1.43 2007/08/29 08:39:29 urbach Exp $ */40

/**

* Hopping_Matrix is the conventional Wilson

* hopping matrix

23

*

* \kappa\sum_{\pm\mu}(r+\gamma_\mu)U_{x,\mu}

*

* for ieo = 0 this is M_{eo}, for ieo = 1

* it is M_{oe}5

*

* l is the number of the output field

* k is the number of the input field

*

**/10

static su3_vector psi1, psi2, psi, chi, phi1, phi3;

/* l output , k input*/

/* for ieo=0, k resides on odd sites and l on even sites */15

void Hopping_Matrix(int ieo, spinor * const l, spinor * const k){

int ix,iy;

int ioff,ioff2,icx,icy;

su3 * restrict up, * restrict um;

spinor * restrict r, * restrict sp, * restrict sm;20

spinor temp;

/* for parallelization */

if (defined MPI && !(defined _NO_COMM))

xchange_field(k, ieo);25

endif

if(k == l){

printf("Error in H_psi (simple.c):\n");

printf("Arguments k and l must be different\n");30

printf("Program aborted\n");

exit(1);

}

if(ieo == 0){

ioff = 0;35

}

else{

ioff = (VOLUME+RAND)/2;

}

ioff2 = (VOLUME+RAND)/2-ioff;40

/**************** loop over all lattice sites ****************/

for (icx = ioff; icx < (VOLUME/2 + ioff); icx++){

ix=g_eo2lexic[icx];

45

24

r=l+(icx-ioff);

/*********************** direction +0 ************************/

iy=g_iup[ix][0]; icy=g_lexic2eosub[iy];

5

sp=k+icy;

if ((defined _GAUGE_COPY))

up=&g_gauge_field_copy[icx][0];

else10

up=&g_gauge_field[ix][0];

endif

_vector_add(psi,(*sp).s0,(*sp).s2);

15

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka0,chi);

_vector_assign(temp.s0,psi);

_vector_assign(temp.s2,psi);20

_vector_add(psi,(*sp).s1,(*sp).s3);

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka0,chi);25

_vector_assign(temp.s1,psi);

_vector_assign(temp.s3,psi);

/*********************** direction -0 ************************/30

iy=g_idn[ix][0]; icy=g_lexic2eosub[iy];

sm=k+icy;

if ((defined _GAUGE_COPY))35

um = up+1;

else

um=&g_gauge_field[iy][0];

endif

40

_vector_sub(psi,(*sm).s0,(*sm).s2);

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka0,chi);

45

25

_vector_add_assign(temp.s0,psi);

_vector_sub_assign(temp.s2,psi);

_vector_sub(psi,(*sm).s1,(*sm).s3);

5

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka0,chi);

_vector_add_assign(temp.s1,psi);

_vector_sub_assign(temp.s3,psi);10

/*********************** direction +1 ************************/

iy=g_iup[ix][1]; icy=g_lexic2eosub[iy];

15

sp=k+icy;

if ((defined _GAUGE_COPY))

up=um+1;

else20

up+=1;

endif

_vector_i_add(psi,(*sp).s0,(*sp).s3);

25

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka1,chi);

_vector_add_assign(temp.s0,psi);

_vector_i_sub_assign(temp.s3,psi);30

_vector_i_add(psi,(*sp).s1,(*sp).s2);

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka1,chi);35

_vector_add_assign(temp.s1,psi);

_vector_i_sub_assign(temp.s2,psi);

40

/*********************** direction -1 ************************/

iy=g_idn[ix][1]; icy=g_lexic2eosub[iy];

26

sm=k+icy;

ifndef _GAUGE_COPY

um=&g_gauge_field[iy][1];

else5

um=up+1;

endif

_vector_i_sub(psi,(*sm).s0,(*sm).s3);

10

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka1,chi);

_vector_add_assign(temp.s0,psi);

_vector_i_add_assign(temp.s3,psi);15

_vector_i_sub(psi,(*sm).s1,(*sm).s2);

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka1,chi);20

_vector_add_assign(temp.s1,psi);

_vector_i_add_assign(temp.s2,psi);

return to Wilson-twisted Dirac operator

25

/*********************** direction +2 ************************/

iy=g_iup[ix][2]; icy=g_lexic2eosub[iy];

sp=k+icy;30

if ((defined _GAUGE_COPY))

up=um+1;

else

up+=1;

endif35

_vector_add(psi,(*sp).s0,(*sp).s3);

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka2,chi);

40

_vector_add_assign(temp.s0,psi);

_vector_add_assign(temp.s3,psi);

_vector_sub(psi,(*sp).s1,(*sp).s2);

45

27

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka2,chi);

_vector_add_assign(temp.s1,psi);

_vector_sub_assign(temp.s2,psi);5

/*********************** direction -2 ************************/

iy=g_idn[ix][2]; icy=g_lexic2eosub[iy];10

sm=k+icy;

ifndef _GAUGE_COPY

um = &g_gauge_field[iy][2];

else15

um = up +1;

endif

_vector_sub(psi,(*sm).s0,(*sm).s3);

20

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka2,chi);

_vector_add_assign(temp.s0,psi);

_vector_sub_assign(temp.s3,psi);25

_vector_add(psi,(*sm).s1,(*sm).s2);

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka2,chi);30

_vector_add_assign(temp.s1,psi);

_vector_add_assign(temp.s2,psi);

/*********************** direction +3 ************************/35

iy=g_iup[ix][3]; icy=g_lexic2eosub[iy];

sp=k+icy;

if ((defined _GAUGE_COPY))40

up=um+1;

else

up+=1;

endif

_vector_i_add(psi,(*sp).s0,(*sp).s2);45

28

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka3,chi);

_vector_add_assign(temp.s0,psi);

_vector_i_sub_assign(temp.s2,psi);5

_vector_i_sub(psi,(*sp).s1,(*sp).s3);

_su3_multiply(chi,(*up),psi);

_complex_times_vector(psi,ka3,chi);10

_vector_add_assign(temp.s1,psi);

_vector_i_add_assign(temp.s3,psi);

/*********************** direction -3 ************************/15

iy=g_idn[ix][3]; icy=g_lexic2eosub[iy];

sm=k+icy;

ifndef _GAUGE_COPY20

um = &g_gauge_field[iy][3];

else

um = up+1;

endif

25

_vector_i_sub(psi,(*sm).s0,(*sm).s2);

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka3,chi);

30

_vector_add((*r).s0, temp.s0, psi);

_vector_i_add((*r).s2, temp.s2, psi);

_vector_i_add(psi,(*sm).s1,(*sm).s3);

35

_su3_inverse_multiply(chi,(*um),psi);

_complexcjg_times_vector(psi,ka3,chi);

_vector_add((*r).s1, temp.s1, psi);

_vector_i_sub((*r).s3, temp.s3, psi);40

/************************ end of loop ************************/

}

}

/* end of If defined SSE2 */

endif45

29

#endif /* thats _USE_HALFSPINOR */

static char const rcsid[] = "$Id: Hopping_Matrix.c,v 1.43 2007/08/29 08:39:29 urbach Exp

end Hopping matrix.c5

Deflation codes

static void random_fields(const int Ns) {

int i, j, ix;10

float r,s[24];

double *t;

r=(float)(1.0/sqrt(24.0*(double)(VOLUME)));

15

for (i=0;i<Ns;i++) {

t=(double*)(dfl_fields[i]);

for (ix = 0; ix < VOLUME; ix++){

ranlxs(s,24);

for (j = 0; j < 24; j++) {20

(*t)=(double)(r*(s[j]-0.5f));

t+=1;

}

}

}25

return;

}

return to deflation

30

Bibliography

[1] Local coherence and deflation of the low quark modes in QCD
M. Luscher JHEP07 081 (2007)

31

	Introductive remark
	Notations
	The gauge fields and gauge configurations
	General properties of the Dirac operator matrix
	Wilson-twisted Dirac operator

	Even-odd preconditionning
	implementation of even-odd preconditionning
	Conjugate Gradient

	Inexact deflation
	Deflation method
	Deflation applied to the Dirac Operator
	Deflation FAPP
	Deflation : theory
	Some properties of PR and PR
	The Little Dirac Operator

	Mathematic tools
	Samples from ETMC codes

