About the inversion of the Dirac operator

Version 1.3

Abstract
In this note we would like to specify a bit what is done when we invert the Dirac operator in lattice QCD.

Contents

1 Introductive remark 2
2 Notations 3
2.1 The gauge fields and gauge configurations 4
2.2 General properties of the Dirac operator matrix 5
2.3 Wilson-twisted Dirac operaton 6
3 Even-odd preconditionning 9
3.1 implementation of even-odd preconditionning 10
3.1.1 Conjugate Gradient 11
10 4 Inexact deflation 15
4.1 Deflation method 15
4.2 Deflation applied to the Dirac Operaton 16
4.3 Deflation FAPP 16
4.4 Deflation : theory 18
4.4.1 Some properties of P_{B} and P_{B} 18
4.4.2 The Little Dirac Operaton 19
5 Mathematic tools 20
6 Samples from ETMC codes 22

Chapter 1

Introductive remark

The inversion of the Dirac operator is an important step during the building of a statistical sample of gauge configurations: indeed in the HMC algorithm
5 it appears in the expression of what is called "the fermionic force" used to update the momenta associated with the gauge fields along a trajectory. It is the most expensive part in overall computation time of a lattice simulation with dynamical fermions because it is done many times.
Actually the computation of the quark propagator, i.e. the inverse of the Dirac
10 operator, is already necessary to compute a simple 2 pts correlation function from which one extracts a hadron mass or its decay constant: indeed that correlation function is roughly the trace (in the matricial language) of the product of 2 such propagators.

Chapter 2

Notations

We are interested in the study of strong interaction, one of the 4 forces governing the Universe. In the Standard Model, the matter fields sensitive to the strong interaction are quarks; those particles have a spin $1 / 2$. They are described by "Dirac spinors" i.e. 4-D complex vectors. The space in which The Dirac operator is written in a vector space which is the tensor product of three (six) vector spaces.

- The "spin space", S, which is a 4-dimension complex vector space. The vector of this space are called "spinors". In this space are defined "gamma matrices" which are constant $4^{*} 4$ hermitian matrices. There are 4 gamma matrices corresponding to the four space-time directions: $\gamma_{x}, \gamma_{y}, \gamma_{z}, \gamma_{t}$ often written in the same order as $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} . \gamma_{4}$ is sometimes named γ_{0}. A γ_{5} is also used. They verify the properties

$$
\begin{equation*}
\gamma_{\mu}^{2}=I_{4 \times 4}, \quad \gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=2 \delta_{\mu \nu} I_{4 \times 4} \tag{2.1}
\end{equation*}
$$

for $\mu, \nu=1,4$ where $I_{4 \times 4}$ is the identity $4^{*} 4$ matrix. click to see the "gamma matrices"

- The "color space", C, which is a 3 -dimension complex vector space. In this space are defined the gluon field matrices (or "gauge matrices) U which are $S U(3)$ matrices id est special unitary $3^{*} 3$ matrices. One such U matrix is defined on every link of the lattice. Contrary to the gamma matrices these U matrices change from link to link and many times during the runs. The Dirac operator in this "color" space is governed by these U matrices as we shall see.
- The lattice space, V of dimension N (the number of lattice sites). This space itself is a tensor product of the X space of dimension L_{x} (length of the lattice in the direction x), Y space of dimension L_{x} (length of the lattice in the direction y), Z (dimension L_{z}) and T space (dimension L_{t}). It results that N is the product

$$
\begin{equation*}
N=L_{x} L_{y} L_{z} L_{t} \tag{2.2}
\end{equation*}
$$

We may denote by p a generic site (or point) on the lattice of coordinates (x, y, z, t). All these linear spaces are periodic, id est x ranges from 1 to L_{x} but $L_{x}+1=1$

The full vector space To summarize the total vector space in which the Dirac operator acts is

$$
\begin{equation*}
W=S \otimes C \otimes X \otimes Y \otimes Z \otimes T \tag{2.3}
\end{equation*}
$$

of dimension $12 N$. Vectors of this space will be called quark fields (sometimes one calls them "Wilson vectors"). In the following we will note the quark fields with the Greek letters $\phi, \psi, \omega, \ldots$ Physicists use to write them $\psi_{\alpha}^{a}(p)$ but we may as well to meet the request of our colleagues write them as

$$
\begin{equation*}
\psi(a, \alpha, x, y, z, t) \tag{2.4}
\end{equation*}
$$

where $a=1,3$ labels the color space (we will always use latin letters a,b,c for color), $\alpha=1,4$ labels the spin space (we will always use greek letters α, β, \ldots for spin) and $x=1, L_{x}, y=1, L_{y}$ etc label the site p on the lattice. The Dirac operator is a $12 N \times 12 N$ matrix in the full vector space. It will be written in general as

$$
\begin{equation*}
D\left(a, \alpha, x, y, z, t ; a^{\prime}, \alpha^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Or, in short-hand notations, D will represent the $12 N \times 12 N$ matrix in the full vector space. We will give a more detailed description of it below. For practical use we now define in the full vector space

$$
\begin{equation*}
I_{12 N \times 12 N}, \quad \text { and } \quad \gamma_{512 N \times 12 N} \tag{2.6}
\end{equation*}
$$

which are the identity matrix in the full space and the the γ_{5} matrix in the spin state times the identity in all other components of the tensor product Eq. (2.3). return-twist
return-implementation

2.1 The gauge fields and gauge configurations

Physicists usually denote the matrices by $U_{\hat{\mu}}(p)$ for the matrix which is on the link starting from the site p in the direction $\mu(\mu=x$ or $\mu=y$ or z or $t)$. In other words $U_{\hat{x}}(p)$ is on the link between the point p of coordinate (x, y, z, t) and the point $p^{\prime},(x+1, y, z, t)$. We could also write the matrix $U_{\hat{x}}(p)$ as $U\left(p^{\prime}, p\right)$. The links are oriented. By definition

$$
\begin{equation*}
U\left(p^{\prime}, p\right) \equiv U^{\dagger}\left(p, p^{\prime}\right) \tag{2.7}
\end{equation*}
$$

[^0]We call "gauge configuration" a generic function which, to every link of the lattice, associates one $S U(3)$ matrix according to the rule Eq. (2.7). The first major step of lattice calculations is to generate a large sample of gauge configurations according to a well defined probability law. In
5 the problem of the inversion the gauge configuration is given and does not change all along the computation. It has to be stored. Its size in bytes if $9 * 16 * 4 * N$. About 400 kB for a lattice $L_{x}=L_{y}=L_{z}=24, L_{t}=48$

2.2 General properties of the Dirac operator matrix

10 There are several forms of the Dirac operator on the lattice. All have their good and bad points, but all point towards the same limit in the continuum, id est when the lattice spacing vanishes. To mention the most popular ones: Wilson with the best variants called "Wilson-clover" and "Wilson-twisted" (the one used by ETMC collaboration); Staggered; overlap; domain-wall. Let us
15 consider the Wilson class. The Dirac matrix is sparse. Indeed, $D\left(a, \alpha, x, y, z, t ; a^{\prime}, \alpha^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)=0$ except in nine cases:

- Same sites: $x=x^{\prime}, y=y^{\prime}, z=z^{\prime}, t=t^{\prime}$
- Nearest neighbours sites or hopping terms:
$-x=x^{\prime} \pm 1, y=y^{\prime}, z=z^{\prime}, t=t^{\prime}$,
$-x=x^{\prime}, y=y^{\prime} \pm 1, z=z^{\prime}, t=t^{\prime}$,
$-x=x^{\prime}, y=y^{\prime}, z=z^{\prime} \pm 1, t=t^{\prime}$ and
$-x=x^{\prime}, y=y^{\prime}, z=z^{\prime}, t=t^{\prime} \pm 1$.
The routine "Hopping_Matrix" computes the action of these nearest neighbours terms. Example of the Wilson-twisted Dirac operator

By "Inversion" we mean inverting partially this matrix id est solving a set of equations of the type

$$
\begin{equation*}
D \psi=\eta \tag{2.8}
\end{equation*}
$$

${ }_{25}$ where D and η are given and ψ is unknown. D is a $12 N \times 12 N$ complex matrix and η and ψ are $12 N$ complex vectors. The solution is often called "quark propagator". Computing these is the major goal for the first year of petaQCD.

2.3 Wilson-twisted Dirac operator

In the case of Wilson-twisted the quarks are associated within doublets. We consider for example together the quarks "u" and "d". In yhis example we assume that they have the same mass. The doublet implies that now the Full space of the Dirac operator is a tensor product

$$
\begin{equation*}
W_{t}=I \otimes S \otimes C \otimes X \otimes Y \otimes Z \otimes T \tag{2.9}
\end{equation*}
$$

where the additional space, I is named "isospin" and has dimensions 2. The vector have two components, corresponding respectively to the u and d quark. We will use only the identity matrix I_{I} in isopin space and the matrix

$$
\tau_{3}=\left(\begin{array}{cc}
1 & 0 \tag{2.10}\\
0 & -1
\end{array}\right)
$$

The upper 1 acts on u quark the lower on d. return to even-odd implementation
The full vector space is now of dimension $24 N$. We write the Dirac operator as

$$
\begin{equation*}
D\left(i, a, \alpha, x, y, z, t ; i^{\prime}, a^{\prime}, \alpha^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right) \tag{2.11}
\end{equation*}
$$

where the new indices $i, i^{\prime}=1,2$ correspond to isospin. For the sake of simplicity we will write the Dirac operator by block of dimension $12 N \times 12 N$ each, the blocks corresponding to the isospin.

$$
D=\left(\begin{array}{cc}
D^{+} & 0 \tag{2.12}\\
0 & D^{-}
\end{array}\right)
$$

This matrix by block is diagonal because we are in a special case in which we use 5 only the identity isospin matrix and the diagonal τ_{3}, Eq. (2.10). In more complex cases the twisted Dirac operator contains also non-diagonal contributions in isospin space, but we will not consider them now. The Dirac operator $D^{+}\left(D^{-}\right)$ is the Dirac operator of the $u(d)$ quark.

Now we define all the non zero matrix elements of the Dirac operator. We will write the identity matrix $I_{C}, I_{S}, I_{x}, I_{y}, I_{z}, I_{t}$ respectively for isospin, color, spin, $\mathrm{x}, \mathrm{y} \mathrm{zt}$ spaces. It is the tensor product of all the preceding ones.

- same site: $x^{\prime}=x, y^{\prime}=y, z^{\prime}=z, t^{\prime}=t$. This term can be written as

$$
\begin{equation*}
D_{\text {same }{ }_{\text {ite }}}^{ \pm}=I_{12 N \times 12 N} \pm 2 i \kappa \mu \gamma_{512 N \times 12 N} \tag{2.13}
\end{equation*}
$$

where we have used these notations κ is a parameter (typically between 0.1 and 0.2) of the run and μ is the quark mass in units of the lattice. The quark mass is a small number (a few 10^{-3}) for light quarks. It can also be written as follows

$$
\begin{equation*}
D_{\text {same site }}^{ \pm}\left(a, \alpha, x, y, z, t ; i, a, \alpha^{\prime}, x, y, z, t\right)=\delta_{\alpha \alpha^{\prime}} \pm 2 i \kappa \mu\left(\gamma_{5}\right)_{\alpha \alpha^{\prime}} \tag{2.14}
\end{equation*}
$$

where the Kronecker symbol $\delta_{\alpha \alpha^{\prime}}$ vanishes until $\alpha=\alpha^{\prime}$ and where we write the matrix elements of τ_{3} and γ_{5} as indices of the matrix name in the order line column. Notice that the color is trivial, identity in color space, and the spin is matrix γ_{5} is the same on all sites. This makes this "same-site" part of Dirac operator rather trivial, which is used in the even-odd treatment. These terms can be found in the routine tm_operators.c. see for example mul_one_pm_imu_sub_mul_gamma5. From now on we consider "hopping terms" i.e. interactions to the nearest neighbour. They are treated in the routine Hopping_Matrix.c.

- Case $x^{\prime}=x-1$.

$$
\begin{equation*}
D_{x^{\prime}=x-1}^{ \pm}=-\kappa\left(I_{4 \times 4}+\gamma_{x}\right) \otimes U\left(p, p^{\prime}\right) \otimes I_{y} \otimes I_{z} \otimes I_{t} \tag{2.15}
\end{equation*}
$$

with the coordinates of $p\left(p^{\prime}\right)$ equal to $x, y, z, t\left(x^{\prime}=x-1, y, z, t\right)$. This can also be written

$$
\begin{gather*}
D_{x^{\prime}=x-1}^{ \pm}\left(a, \alpha, x, y, z, t ; i, a, \alpha^{\prime}, x-1, y, z, t\right)=- \\
\kappa\left(\delta_{\alpha \alpha^{\prime}}+\left(\gamma_{x}\right)_{\alpha \alpha^{\prime}}\right) U\left(p, p^{\prime}\right)_{a, a^{\prime}} \tag{2.16}
\end{gather*}
$$

The color structure of this part is non trivial. It depends on the gauge configuration. In an inversion the $U\left(p, p^{\prime}\right)$ do not change during the calculation but they are different from one couple p, p^{\prime} to another q, q^{\prime}. See for instance the piece of code in Hopping_Matrix.c.

- Case $x^{\prime}=x+1$.

$$
\begin{equation*}
D_{x^{\prime}=x+1}^{ \pm}=-\kappa\left(I_{4 \times 4}-\gamma_{x}\right) \otimes U\left(p, p^{\prime}\right) \otimes I_{y} \otimes I_{z} \otimes I_{t} \tag{2.17}
\end{equation*}
$$

with the coordinates of $p\left(p^{\prime}\right)$ equal to $x, y, z, t\left(x^{\prime}=x+1, y, z, t\right)$. This can also be written

$$
\begin{gather*}
D_{x^{\prime}=x+1}^{ \pm}\left(a, \alpha, x, y, z, t ; i, a, \alpha^{\prime}, x-1, y, z, t\right)=- \\
\kappa\left(\delta_{\alpha \alpha^{\prime}}-\left(\gamma_{x}\right)_{\alpha \alpha^{\prime}}\right) U\left(p, p^{\prime}\right)_{a, a^{\prime}} \tag{2.18}
\end{gather*}
$$

- Case $y^{\prime}=y \pm 1$

$$
\begin{gather*}
D_{y^{\prime}=y \pm 1}^{ \pm}\left(a, \alpha, x, y, z, t ; i, a, \alpha^{\prime}, x, y^{\prime}=y \pm 1, z, t\right)=- \\
\kappa\left(\delta_{\alpha \alpha^{\prime}} \mp\left(\gamma_{y}\right)_{\alpha \alpha^{\prime}}\right) U\left(p, p^{\prime}\right)_{a, a^{\prime}} \tag{2.19}
\end{gather*}
$$

with the coordinates of $p\left(p^{\prime}\right)$ equal to $x, y, z, t\left(x, y^{\prime}=y \pm 1, z, t\right)$.

- Case $z^{\prime}=z \pm 1$

$$
\begin{gather*}
D_{z^{\prime}=z \pm 1}^{ \pm}\left(a, \alpha, x, y, z, t ; i, a, \alpha^{\prime}, x, y, z^{\prime}=z \pm 1, t\right)=- \\
\kappa\left(\delta_{\alpha \alpha^{\prime}} \mp\left(\gamma_{z}\right)_{\alpha \alpha^{\prime}}\right) U\left(p, p^{\prime}\right)_{a, a^{\prime}} \tag{2.20}
\end{gather*}
$$

with the coordinates of $p\left(p^{\prime}\right)$ equal to $x, y, z, t\left(x, y, z^{\prime}=z \pm 1, t\right)$.

- Case $t^{\prime}=t \pm 1$

$$
\begin{gather*}
D_{t^{\prime}=t \pm 1}^{ \pm}\left(a, \alpha, x, y, z, t ; i, a, \alpha^{\prime}, x, y, z, t^{\prime}=t \pm 1\right)=- \\
\kappa\left(\delta_{\alpha \alpha^{\prime}} \mp\left(\gamma_{t}\right)_{\alpha \alpha^{\prime}}\right) U\left(p, p^{\prime}\right)_{a, a^{\prime}} \tag{2.21}
\end{gather*}
$$

with the coordinates of $p\left(p^{\prime}\right)$ equal to $x, y, z, t\left(x, y, z, t^{\prime}=t \pm 1\right)$.
All other matrix elements of the Dirac operator are zero. This is why the Dirac operator is a sparce matrix. The number or matrix elements for one isespin is equal to $(4 * 3)^{2} * N^{2}$. The number of non vanishing matrix elements ${ }_{5}$ is $588 * N=12 * N+8 *(4+4) * 9 * N$, where the first term is for the "same site" and the second term is for the 8 directions, $4+4$ for the sum of two Dirac matrices times 9 for the generic $S U(3)$ matrix.
return to general properties of Dirac operator

Chapter 3

Even-odd preconditionning

The lattice sites can be classified according to the parity of $x+y+z+t$. The "same-site" matrix elements of the Dirac operator relate stay into the same 5 parity. As already shown (see

Wilson-twisted Dirac operator they are very simple. The hopping terms relate sites of opposite parity. The complexitty lies there. The vector space in which the Dirac operator acts has dimension $12 N$. Separating the even and odd sites we have two subspaces of dimension $12 N / 2$. This is used to perform a precon-
10 ditioning named "even-odd preconditioning. In the following we will write the Dirac operator by blocks according to this decomposition.

The general idea of preconditionning consists of multiplying both side of the initial system like eq. (2.8) by a preconditionning (regular) matrix P to abtain a new system : $P D \psi=P \eta$ whose matrix $P D$ is supposed to have a smaller
15 condition number $\left|\lambda_{\max } / \lambda_{\min }\right|$ than the original one D.
The Wilson action is such that only the nearest neighbours are concerned by the interaction (the matrix is sparse) and we can rewrite eq. (2.8) as (we will forget the color-spin indices from now)

$$
\left(\begin{array}{cc}
D(e e) & D(e o) \tag{3.1}\\
D(o e) & D(o o)
\end{array}\right)\binom{\psi(e)}{\psi(o)}=\binom{\phi(e)}{\phi(o)}
$$

where e and o sets all the lattice sites which are "even" and "odd". The size of the subblocs is $12 N / 2 \times 12 N / 2$. For the Wilson and Wilson-twisted Dirac operators, $D(e e)$ and $D(o o)$ are diagonal in the volume space. Consequently those submatrices are very easy to invert. Multiplying both sides of Eq. (3.1) by the preconditioning matrix

$$
P=\left(\begin{array}{cc}
D^{-1}(e e) & 0 \tag{3.2}\\
-D(o e) D^{-1}(e e) & 1
\end{array}\right)
$$

We get

$$
\begin{align*}
& \left(\begin{array}{cc}
I_{6 N \times 6 N} & D(e e)^{-1} D(e o) \\
0 & D(o o)-D(o e) D(e e)^{-1} D(e o)
\end{array}\right)\binom{\psi(e)}{\psi(o)} \\
= & \binom{D(e e)^{-1} \phi(e)}{\phi(o)-D(o e) D(e e)^{-1} \phi(e)} \tag{3.3}
\end{align*}
$$

This leads to Eq. (3.1) as

$$
\begin{equation*}
\psi(e)=D^{-1}(e e)[\phi(e)-D(e o) \psi(o)] \tag{3.4}
\end{equation*}
$$

simple to solve when $D^{-1}(e e)$ is simple, and

$$
\begin{equation*}
\left[D(o o)-D(o e) D^{-1}(e e) D(e o)\right] \psi(o)=\phi(o)-D(o e) D^{-1}(e e) \phi(e) \tag{3.5}
\end{equation*}
$$

where the right-hand side is again easy to compute, but inverting the matrix on the left-hand side is non trivial. The auxiliary system to solve is then

$$
\begin{equation*}
\hat{D}(o o) \psi(o)=\phi^{\prime}(o) \tag{3.6}
\end{equation*}
$$

where $\hat{D}(o o)=D(o o)-D(o e) D^{-1}(e e) D(e o)$ and $\phi^{\prime}(o)=\phi(o)-D(o e) D^{-1}(e e) \phi(e)$. We have diminished the size of the system to solve by 2 . Note that it works only because $D(e e)$ is diagonal in space for Wilson (and Wilson-twisted) fermions. note also that the even-odd preconditioning has a drawback, dixit Philippe: it
5 does not allow "multisolvers" i.e. codes which solve different quark masses in one stroke. We now show a practical implementation of the even-odd preconditioning in the ETMC package.

3.1 implementation of even-odd preconditionning

In fact, the Wilson-twisted Dirac operator in the full $24 N \times(24 N)$ vector space is modified as follows :

$$
\left(\begin{array}{cc}
Q^{+} & 0 \tag{3.7}\\
0 & Q^{-}
\end{array}\right) \equiv\left(\begin{array}{cc}
\gamma_{512 N \times 12 N} \times D^{+} & 0 \\
0 & \gamma_{512 N \times 12 N} \times D^{-}
\end{array}\right)
$$

where we use the notations Eq. (2.6).
We use the fact that the matrices D and Q are diagonal by block τ_{3} is diagonal in the isospin space). So the upper (lower) block of dimension $12 \mathrm{~N} \times$ $(12 N)$ corresponds to the $u(d)$ quark. From Eq. (3.1) we get

$$
\begin{align*}
Q^{ \pm} & =\gamma_{512 N \times 12 N}\left(\begin{array}{cc}
D_{e e}^{ \pm} & D_{e o} \\
D_{o e} & D_{o o}^{ \pm}
\end{array}\right) \tag{3.8}\\
& =\left(\begin{array}{cc}
\gamma_{56 N \times 6 N} D_{e e}^{ \pm} & 0 \\
\gamma_{56 N \times 6 N} D_{o e} & \gamma_{56 N \times 6 N}
\end{array}\right)\left(\begin{array}{cc}
I_{6 N \times 6 N} & \left(D_{e e}^{ \pm}\right)^{-1} D_{e o} \\
0 & \left(D_{o o}^{ \pm}-D_{o e}\left(D_{e e}^{ \pm}\right)^{-1} D_{e o}\right)
\end{array}\right)
\end{align*}
$$

where the definition of $\gamma_{56 N \times 6 N}$ and $I_{6 N \times 6 N}$ are similar in the even/odd subspaces to that of $\gamma_{512 N \times 12 N}$ and $I_{12 N \times 12 N}$ in the full space and where we have multiplied Q by a preconditionning matrix

$$
\left(\begin{array}{cc}
P^{+} & 0 \tag{3.9}\\
0 & P^{-}
\end{array}\right) \gamma_{512 N \times 12 N}
$$

where $P^{ \pm}$is defined in Eq. (3.2) and where we use the fact that $\gamma_{56 N \times 6 N}$ commutes with $D_{e e}, D_{o e}, D_{e o}, D_{o o}$. One can check that
$\gamma_{512 N \times 12 N}\left(\begin{array}{cc}\left(D_{e e}^{ \pm}\right)^{-1} & 0 \\ -D(o e) D^{-1}(e e) & I_{6 N \times 6 N}\end{array}\right)=\left(\begin{array}{cc}D_{e e}^{ \pm} & 0 \\ D_{o e} & I_{6 N \times 6 N}\end{array}\right)^{-1} \gamma_{512 N \times 12 N}(3$
Using the fact that

$$
\begin{equation*}
D_{e e}^{ \pm}=D_{o o}^{ \pm}=I_{6 N \times 6 N} \pm i \mu \gamma_{56 N \times 6 N} \tag{3.11}
\end{equation*}
$$

and that $\left(\gamma_{56 N \times 6 N}\right)^{2}=I_{6 N \times 6 N}$ one finds that the very simple result

$$
\begin{equation*}
\left(D_{e e}^{ \pm}\right)^{-1}=\left(D_{o o}^{ \pm}\right)^{-1}=\frac{1}{1+\mu^{2}}\left(I_{6 N \times 6 N} \mp i \mu \gamma_{56 N \times 6 N}\right) \tag{3.12}
\end{equation*}
$$

We have to solve Eq. (3.1) which amounts to

$$
\begin{equation*}
Q^{ \pm}\binom{\psi(e)^{ \pm}}{\psi(o)^{ \pm}}=\gamma_{512 N \times 12 N}\binom{\phi(e)^{ \pm}}{\phi(o)^{ \pm}} \tag{3.13}
\end{equation*}
$$

From Eq. (3.8) and applying to both sides the r.h.s of Eq. (3.10) we are left to solving

$$
\begin{equation*}
\hat{Q}^{ \pm} \psi(o)^{ \pm}=\gamma_{56 N \times 6 N}\left(\phi(o)^{ \pm}-D(o e)\left(D_{e e}^{ \pm}\right)^{-1} \phi(e)^{ \pm}\right) \tag{3.14}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{Q}^{ \pm} & =\gamma_{56 N \times 6 N}\left(D_{o o}^{ \pm}-D_{o e}\left(D_{e e}^{ \pm}\right)^{-1} D_{e o}\right) \\
\psi(e)^{ \pm} & =\left(D_{e e}^{ \pm}\right)^{-1}\left[\gamma_{56 N \times 6 N} \phi(e)^{ \pm}-D(e o) \psi(o)^{ \pm}\right] \tag{3.15}
\end{align*}
$$

We have used the fact that $D_{o e}$ and $D_{e o}$ are identaical for the $u(+)$ and $d(-)$ quark. Notice that $\hat{Q}^{ \pm}$is only defined on the odd sites. To solve Eq. (3.14) let us consider the conjugate-gradiant algorithm.

3.1.1 Conjugate Gradient

So, we have to solve systems like

$$
\begin{equation*}
\hat{Q}^{ \pm} X=\phi_{0}^{\prime} \tag{3.16}
\end{equation*}
$$

However, the $\hat{Q}^{ \pm}$matrix does not have the needed proprieties to be solved by the Conjugate Gradient (CG) algorithm. We thus solve the equation

$$
\begin{equation*}
\hat{Q}_{+} \hat{Q}_{-} X=\Phi_{0}, \quad \Phi_{0}=\hat{Q}_{-} \phi_{0}^{\prime} \tag{3.17}
\end{equation*}
$$

Since $\hat{Q}_{+} \hat{Q}_{-}$is Hermitian it can be made by conjugate gradient.
The general conjugate gradient algorithm (for a symmetric - or hermitianpositive definite matrix), for a system $A x=b$ is the following. One can shown that the solution of the initial system minimize the bilinear functionnal
${ }_{5} J(u)=\frac{1}{2}(A u, u)-(b, u)((.,$.$) denoting a scalar product). This strictly convex$ functionnal has suited properties, in order to characterize a unique solution of the minimization problem. Starting from any inial vector x^{0}, the solution can be written in terms of an orthogonal basis $\left(d^{k}\right)$:

$$
\begin{equation*}
x-x^{0}=\sum_{k=0}^{n-1} \alpha^{k} d^{k} \tag{3.18}
\end{equation*}
$$

reporting into the functionnal ;

$$
\begin{equation*}
J(x)=J\left(x^{0}\right)+\sum_{k=0}^{n-1} \alpha^{k}\left(A x^{0}-b, d^{k}\right)+\frac{1}{2} \sum_{k=0}^{n-1}\left(\alpha^{k}\right)^{2}\left(A d^{k}, d^{k}\right) \tag{3.19}
\end{equation*}
$$

Writing the vanishing of the derivates $\frac{\partial J}{\partial \alpha^{k}}$, one get:

$$
\begin{equation*}
x=x^{0}+\sum_{k=0}^{n-1} \alpha^{k} d^{k}=x^{0}+\sum_{k=0}^{n-1} \frac{\left(b-A x^{0}, d^{k}\right)}{\left(A d^{k}, d^{k}\right)} d^{k} \tag{3.20}
\end{equation*}
$$

From what the following algorithm can be deduced:

- initialization

$$
\begin{gather*}
r^{0}=b-A x^{0} \\
d^{0}=r^{0} \tag{3.21}
\end{gather*}
$$

- iterations
minimization step :

$$
\begin{gather*}
\alpha^{k}=\left(r^{k}, r^{k}\right) /\left(A d^{k}, d^{k}\right) \\
x^{k+1}=x^{k}+\alpha^{k} d^{k} \tag{3.22}\\
r^{k+1}=r^{k}-\alpha^{k} A d^{k}
\end{gather*}
$$

computation of a new direction and orthogonalization :

$$
\begin{gather*}
\beta^{k+1}=\left(r^{k+1}, r^{k+1}\right) /\left(r^{k}, r^{k}\right) \\
d^{k+1}=r^{k+1}+\beta^{k+1} d^{k} \tag{3.23}
\end{gather*}
$$

in HMC, the conjugate gradient (for hermitian matrices) is coded in the method cg_her (file /solver/cg_her.c). The product matrix vector is referenced by the pointer argument "matrix_mult f". For instance, cg_her is called in invert_eo.c in the following manner :

```
            iter = cg_her(Odd_new, g_spinor_field[DUM_DERI], max_iter, precision, rel_prec,
```

 VOLUME/2, \&Qtm_pm_psi, sub_evs_flag, 1000);
 The product matrix by vector is coded in this case by : Qtm_pm_psi. The code is the following :

```
    void Qtm_pm_psi(spinor * const l, spinor * const k){
    /* Q_{-} */
    Hopping_Matrix(EO, g_spinor_field[DUM_MATRIX+1], k);
    mul_one_pm_imu_inv(g_spinor_field[DUM_MATRIX+1], -1.);
    Hopping_Matrix(OE, g_spinor_field[DUM_MATRIX], g_spinor_field[DUM_MATRIX+1]);
    mul_one_pm_imu_sub_mul_gamma5(g_spinor_field[DUM_MATRIX], k, g_spinor_field[DUM_MATRIX
    /* Q_{+} */
    Hopping_Matrix(EO, l, g_spinor_field[DUM_MATRIX]);
    mul_one_pm_imu_inv(l, +1.);
    Hopping_Matrix(OE, g_spinor_field[DUM_MATRIX+1], l);
    mul_one_pm_imu_sub_mul_gamma5(l, g_spinor_field[DUM_MATRIX], g_spinor_field[DUM_MATRIX
}
```

In the main loop of cg_her one can recognize the CG algorithm :

```
    /* main loop */
    for(iteration=0;iteration<max_iter;iteration++){
        f(g_spinor_field[DUM_SOLVER+4], g_spinor_field[DUM_SOLVER+2]);
        if((subtract_ev == 1) && (iteration%modulo == 0)) {
        sub_lowest_eigenvalues(g_spinor_field[DUM_SOLVER+4], g_spinor_field[DUM_SOLVER+2],
    }
    /* c=scalar_prod(&g_ev[0*VOLUME], g_spinor_field[DUM_SOLVER+4]);
        printf("%e, %e\n",c.re,c.im); */
    pro=scalar_prod_r(g_spinor_field[DUM_SOLVER+2], g_spinor_field[DUM_SOLVER+4], N);
    /* Compute alpha_cg(i+1) */
    alpha_cg=normsq/pro;
    /* Compute x_(i+1) = x_i + alpha_cg(i+1) p_i */
```

```
            assign_add_mul_r(g_spinor_field[DUM_SOLVER], g_spinor_field[DUM_SOLVER+2], alpha_cg
            /* Compute r_(i+1) = r_i - alpha_cg(i+1) Qp_i */
            assign_add_mul_r(g_spinor_field[DUM_SOLVER+1], g_spinor_field[DUM_SOLVER+4], -alpha_
5 /* Check whether the precision is reached ... */
            err=square_norm(g_spinor_field[DUM_SOLVER+1], N);
            if(g_debug_level > 0 && g_proc_id == g_stdio_proc) {
            printf("cg_her: %d\t% 23.16e\n",iteration,err); fflush( stdout);
            }
            if(((err <= eps_sq) && (rel_prec == 0)) || ((err <= eps_sq*squarenorm) && (rel_prec
                if((subtract_ev == 1)){
    assign_add_invert_subtracted_part(g_spinor_field[DUM_SOLVER], Q, 10, N);
            }
            assign(P, g_spinor_field[DUM_SOLVER], N);
            f(g_spinor_field[DUM_SOLVER+2], P);
            diff(g_spinor_field[DUM_SOLVER+3], g_spinor_field[DUM_SOLVER+2], Q, N);
            err = square_norm(g_spinor_field[DUM_SOLVER+3], N);
            if(g_debug_level > 0 && g_proc_id == g_stdio_proc) {
    printf("cg_her: true residue %d\t% 23.16e\t\n",iteration, err); fflush( stdout);
            }
            g_sloppy_precision = 0;
            return(iteration+1);
    }
```

25 return to eo implementation

Chapter 4

Inexact deflation

The deflation method is a general method to solve efficiently a linear system with eigenvalues of small magnitude. It is somehow a generalization of the ${ }_{5}$ preconditioning method.

Let A be an invertible matrix, consider the linear system

$$
\begin{equation*}
A x=b \tag{4.1}
\end{equation*}
$$

the preconditioning method amounts finding an invertible matrix P with the property that $P A$ is better conditioned that A (ie the conditioning number of $P A$ is lower) and to solve

$$
P A x=P b
$$

This is easy to propose, but finding P is a big problem (I would suggest $P=$ $\left.A^{-1}:\right)$).

The deflation method use a projector P ie an operator satisfying $P^{2}=P$ and therefore non invertible (except for the identity) and then solve

$$
\left\{\begin{array}{l}
P A x=P b \tag{4.2}\\
\bar{P} A x=\bar{P} b
\end{array}\right.
$$

where $\bar{P}=1-P$. Each of these two linear systems has an infinite number of solutions, but it is still possible to reconstruct the solution of Eq. (4.1). Note
10 that it is quite paradoxical that solving the two non invertible systems (infinite condition number, see below) is more favorable than solving a single invertible system (finite condition number).

4.1 Deflation method

Again let A be an invertible operator and P_{L} a projector, $P_{L}^{2}=P_{L}$ there${ }_{15}$ fore P_{L} is not invertible (except the identity), there exists a projector P_{R} such that $P_{L} A=A P_{R}$. Indeed $P_{R}=A^{-1} P_{L} A$, one has $P_{R}^{2}=A^{-1} P_{L} A A^{-1} P_{L} A=$ $A^{-1} P_{L}^{2} A=A^{-1} P_{L} A=P_{R}$. We note $\overline{P_{L}}=1-P_{L}$ and $\overline{P_{R}}=1-P_{R}$.

Consider the system

$$
\begin{equation*}
P_{L} A x=P b \tag{4.3}
\end{equation*}
$$

and let x_{1} be a solution, take $y \in \operatorname{ker} P_{R}\left(\right.$ ie $\left.P_{R} y=0\right)$

$$
\begin{aligned}
P_{L} A\left(x_{1}+y\right) & =P_{L} A x_{1}+P_{L} A y \\
& =P b+A P_{R} y \\
& =P b
\end{aligned}
$$

therefore $x_{1}+y$ is also a solution : the system Eq. (4.3) has an infinite number of solution.

Consider now $\overline{x_{1}}$ a solution of $\overline{P_{L}} A x=\bar{P}_{L} b$ then

$$
x=P_{R} x+\overline{P_{R}} \overline{x_{1}}
$$

is the solution of Eq. 4.1). Indeed

$$
A x=A P_{R} x_{1}+A \overline{P_{R}} \overline{x_{1}}=P_{R} A x_{1}+\bar{P}_{R} A \overline{x_{1}}=P_{R} b+\overline{P_{R}} b=b
$$

All the difficulty is to find a smart projector P_{L}. This is what Luscher did [1], and his paper is presented below.

s 4.2 Deflation applied to the Dirac Operator

What is presented below is just a rephrasing of the Luscher paper 1. First the practical aspect are presented, the justification comes after. The key point is a smart choice of the projector. The image of this projector is called the deflated subspace and the restriction of the Dirac operator the restricted Dirac operator.
10 The restriction of the Dirac operator to the kernel of this projector is called the little Dirac operator.

4.3 Deflation FAPP

This paragraph should be enough to program the deflation algorithm as a recipe. The aim is to solve the inhomogeneous Dirac equation.

$$
D \psi=\eta
$$

1. Divide the 4 dimensional lattice into N_{b} blocks,
2. Choose N_{s} random vectors $\psi_{0, l}$ (component iidd density ?)
3. compute in some way $\psi_{l}=" D^{-1} " \psi_{0, l}$ (approximate and cheap inverse),

[^1]4. define the $N_{s} N_{b}$ vectors ψ_{l}^{b} the restriction of ψ_{l} to the $b^{\text {th }}$ block (all components for sites not in the $b^{\text {th }}$ block are set to zero). Note that it is not necessary to use more memory than $N_{b} \times 12 N 2$
5. orthogonalize this $N_{s} N_{b}$ vectors. Note than the Gram-Schmidt (or other procedure) can be applied into the blocks separately since between blocks the orthogonality is automatic.
6. Compute the $N_{s} N_{b} \times N_{s} N_{b}$ matrix A, called little Dirac operator, with entry $A_{l b}^{l^{\prime} b^{\prime}}=\left\langle\psi_{l}^{b}\right| D\left|\psi_{l^{\prime}}^{b^{\prime}}\right\rangle$. Note that it requires not more than N_{s} D-application and scalar product (there is some extra memory requirement for the sites of the boundaty of the block),
7. Invert A, to a good accuracy,
8. compute $|X\rangle=\sum_{k, l=1}^{N_{s} N_{b}}\left(A^{-1}\right)_{k l}\left\langle\psi_{l} \eta\right\rangle\left|\psi_{l}\right\rangle$ (the index of the block has been skipped for clarity). again only N_{s} scalar product are necessary,
9. find, iteratively (no other way!) one solution of the deflated Dirac operator $P_{L} D$, and apply P_{R} to get a unique and well defined vector $|Y\rangle$
10. The desired solution is $|X\rangle+|Y\rangle$. That's all folks!

Notes

- One has

$$
\begin{align*}
& \overline{P_{L}}|\psi\rangle=\sum_{k ; l=1}^{N_{b} N_{s}}\left(A^{-1}\right)_{k l}\left\langle\psi_{l} \psi\right\rangle D\left|\psi_{k}\right\rangle \tag{4.4}\\
& \overline{P_{R}}|\psi\rangle=\sum_{k ; l=1}^{N_{b} N_{s}}\left(A^{-1}\right)_{k l}\left\langle\psi_{l} \mid D \psi\right\rangle\left|\psi_{k}\right\rangle \tag{4.5}
\end{align*}
$$

note that P_{R} is much longer to apply than P_{L} since D is applied $N_{b} N_{s}$ times, but P_{R} is applied only once whereas P_{L} is applied many times.

- Extra Memory : In addition to the memory for the standard procedure, one needs to store the $2 N_{s}$ vectors $\left|\psi_{k}\right\rangle$, and $D\left|\psi_{k}\right\rangle$, and the $N_{s} N_{b} \times N_{s} N_{b}$ matrix (little Dirac operator), together with some peanuts.
- Extra computation : Applying the deflated Dirac operator instead of the Dirac operator implies $N_{s} N_{b}$ extra scalar product. The little Dirac operator has to be inverted, and N_{b} extra scalar product must computed.

[^2]
4.4 Deflation : theory

In this paragraph we give the details of the proofs and explain why Eq. (4.4) and Eq. (4.5) are good choices. Note P_{L} and P_{R} are the P and Q of the introduction, and as usual $\overline{P_{L}}=1-P_{L}$ and $\overline{P_{R}}=1-P_{R}$.

${ }_{5}$ 4.4.1 Some properties of P_{R} and P_{R}

- Let us show that P_{L} and P_{R}, or equivalently $\overline{P_{L}}$ and $\overline{P_{R}}$, are projectors

$$
\begin{aligned}
{\overline{P_{L}}}^{2}|\psi\rangle & =\sum_{k, l}\left(A^{-1}\right)_{k l}\left\langle\psi_{l}\left(\sum_{q, m}\left(A^{-1}\right)_{q m}\left\langle\psi_{m} \psi\right\rangle D\left|\psi_{q}\right\rangle\right)\right\rangle D\left|\psi_{k}\right\rangle \\
& =\sum_{k, l, q, m}\left(A^{-1}\right)_{k l}\left(A^{-1}\right)_{q m}\left\langle\psi_{m} \psi\right\rangle\left\langle\psi_{l} \mid D \psi_{q}\right\rangle D\left|\psi_{k}\right\rangle \\
& =\sum_{k, l, q, m}\left(A^{-1}\right)_{k l}\left(A^{-1}\right)_{q m} A_{l, q}\left\langle\psi_{m} \psi\right\rangle D\left|\psi_{k}\right\rangle \\
& \left.\left.=\sum_{k, l, m}\left(A^{-1}\right)_{k l}\left(\sum_{q} A_{l q}\left(A^{-1}\right)_{q m}\right)\left\langle\psi_{m} \psi\right\rangle D\left|\psi_{k}\right| \psi\right\rangle\right\rangle \\
& =\sum_{k, l, m}\left(A^{-1}\right)_{k l} \delta_{l, m}\left\langle\psi_{m} \psi\right\rangle D\left|\psi_{k}\right\rangle \\
& =\overline{P_{L}}|\psi\rangle
\end{aligned}
$$

where we have use the definition of the matrix A.

- P_{R} is also a projector

$$
\begin{aligned}
{\overline{P_{R}}}^{2}|\psi\rangle & \left.=\sum_{k, l}\left(A^{-1}\right)_{k l}\left\langle\psi_{l}\right| D\left(\sum_{q, m}\left(A^{-1}\right)_{q m}\left\langle\psi_{m} \mid D \psi\right\rangle\left|\psi_{q}\right\rangle\right)\right\rangle\left|\psi_{k}\right\rangle \\
& =\sum_{k, l, q, m}\left(A^{-1}\right)_{k l}\left(A^{-1}\right)_{q m}\left\langle\psi_{m} \mid D \psi\right\rangle\left\langle\psi_{l} \mid D \psi_{q}\right\rangle\left|\psi_{k}\right\rangle \\
& =\sum_{k, l, q, m}\left(A^{-1}\right)_{k l}\left(A^{-1}\right)_{q m} A_{l q}\left\langle\psi_{m} \mid D \psi\right\rangle\left|\psi_{k}\right\rangle \\
& =\sum_{k, l, m}\left(A^{-1}\right)_{k l}\left\langle\psi_{m} \mid D \psi\right\rangle\left(\sum_{q} A_{l q}\left(A^{-1}\right)_{q m}\right)\left|\psi_{k}\right\rangle \\
& =\sum_{k, l}\left(A^{-1}\right)_{k l}\left\langle\psi_{l} \mid D \psi\right\rangle\left|\psi_{k}\right\rangle \\
& =\frac{P_{R}}{}|\psi\rangle
\end{aligned}
$$

- Let's now show that $P_{L} D=D P_{R}$ or equivalently $\overline{P_{L}} D=D \overline{P_{R}}$

$$
\begin{aligned}
D \overline{P_{R}}|\psi\rangle & =D\left(\sum_{k ; l=1}\left(A^{-1}\right)_{k l}\left\langle\psi_{l} \mid D \psi\right\rangle\left|\psi_{k}\right\rangle\right) \\
& =\sum_{k ; l=1}\left(A^{-1}\right)_{k l}\left\langle\psi_{l} \mid D \psi\right\rangle D\left|\psi_{k}\right\rangle \\
& =\overline{P_{L}} D|\psi\rangle
\end{aligned}
$$

- Let's show $P P_{L}=0$

$$
\begin{aligned}
P P_{L}|\psi\rangle & =P\left(|\psi\rangle-\sum_{q, l}\left(A^{-1}\right)_{k, l}\left\langle\psi_{l} \psi\right\rangle D\left|\psi_{l}\right\rangle\right) \\
& =\sum_{q}\left|\psi_{q}\right\rangle\left\langle\psi_{q}\right||\psi\rangle-\sum_{q, k, l}\left|\psi_{q}\right\rangle\left\langle\psi_{q}\right|\left(A^{-1}\right)_{k, l}\left\langle\psi_{l} \psi\right\rangle D\left|\psi_{l}\right\rangle \\
& =\sum_{q}\left|\psi_{q}\right\rangle\left\langle\psi_{q}\right||\psi\rangle-\sum_{q, l}\left(\sum_{k} A_{q, k}\left(A^{-1}\right)_{k, l}\right)\left\langle\psi_{l} \psi\right\rangle\left|\psi_{q}\right\rangle \\
& =\sum_{q}\left|\psi_{q}\right\rangle\left\langle\psi_{q}\right||\psi\rangle-\sum_{q, l} \delta_{q, l}\left\langle\psi_{l} \psi\right\rangle\left|\psi_{q}\right\rangle \\
& =0
\end{aligned}
$$

4.4.2 The Little Dirac Operator

This is the sytem

$$
\begin{equation*}
\overline{P_{L}} D|\psi\rangle=\overline{P_{L}}|\eta\rangle \tag{4.6}
\end{equation*}
$$

Consider the vector

$$
|S\rangle=D^{-1} \overline{P_{L}}|\eta\rangle
$$

it is esay to see that it is a solution of Eq. 4.6) ($\overline{P_{L}} D D^{-1} \overline{P_{L}}|\eta\rangle=\overline{P_{L}}|\eta\rangle$). Then as explained in section one has to apply the operator $\overline{P_{R}}$ to $|S\rangle$. Note that $\overline{P_{R}} D^{-1} \overline{P_{L}}=D^{-1}{\overline{P_{L}}}^{2}=D^{-1} \overline{P_{L}}$ is very easy to compute as

$$
D^{-1} \overline{P_{L}}|\eta\rangle=\sum_{k, l}\left(A^{-1}\right)_{k, l}\left\langle\psi_{l} \eta\right\rangle\left|\psi_{k}\right\rangle
$$

Chapter 5

Mathematic tools

Definition of Gamma matrices

$$
\begin{align*}
& \gamma_{t}=\gamma_{4}=\gamma_{0} \equiv\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \tag{5.1}\\
& \gamma_{x}=\gamma_{1} \equiv\left(\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) \tag{5.2}\\
& \gamma_{y}=\gamma_{2} \equiv\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \tag{5.3}\\
& \gamma_{z}=\gamma_{3} \equiv\left(\begin{array}{cccc}
0 & 0 & i & 0 \\
0 & 0 & 0 & -i \\
-i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right) \tag{5.4}\\
& \gamma_{5} \equiv\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \tag{5.5}
\end{align*}
$$

return from γ_{5}

There are other representations of the gamma matrices which have the same properties. We will keep these ones.

Algebraic properties of the gamma matrices

For $\mu, \nu,=0,3$ (or identically $\mu, \nu,=1,4$) and using the shorthand notation $1=I_{4 \times 4}$

$$
\begin{array}{cl}
\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=\delta_{\mu \nu} \quad \gamma_{\mu} \gamma_{5}+\gamma_{5} \gamma_{\mu}=0 \quad \gamma_{5}^{2}=1 \quad \text { whence } \\
\frac{1 \pm \gamma_{5}}{2} \frac{1 \mp \gamma_{5}}{2}=0 & \frac{1 \pm \gamma_{5}}{2} \frac{1 \pm \gamma_{5}}{2}=\frac{1 \pm \gamma_{5}}{2} \\
\frac{1 \pm \gamma_{5}}{2} \gamma_{\mu} \frac{1 \pm \gamma_{5}}{2}=0 & \frac{1 \pm \gamma_{5}}{2} \gamma_{\mu} \frac{1 \mp \gamma_{5}}{2}=\frac{1 \pm \gamma_{5}}{2} \gamma_{\mu} \tag{5.6}
\end{array}
$$

where $\delta_{\mu \nu}$ is the Kronecker symbol. Notice that $\left(1 \pm \gamma_{5}\right) / 2$ are complementary projectors in spin space. These are denoted "chirality projectors" with $\left(1+\gamma_{5}\right) / 2$ (respectively $\left(1-\gamma_{5}\right) / 2$) is the projector on positive (respectively negative) chirality.

return to notations

Definition of $S U(3)$

The hermitian conjugate of a $3^{*} 3$ complex matrix

$$
U \equiv\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \tag{5.7}\\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right)
$$

is defined by

$$
U^{\dagger} \equiv\left(\begin{array}{lll}
u_{11}^{*} & u_{21}^{*} & u_{31}^{*} \tag{5.8}\\
u_{12}^{*} & u_{22}^{*} & u_{32}^{*} \\
u_{13}^{*} & u_{23}^{*} & u_{33}^{*}
\end{array}\right)
$$

where for any complex number z, z^{*} is the complex conjugate (changed the sign of the imaginary part). A matrix U is told to be unitary if

$$
\begin{equation*}
U^{\dagger} * U=I_{3 \times 3} \tag{5.9}
\end{equation*}
$$

where * denotes the matrix product and $I_{3 \times 3}$ is the identity $3^{*} 3$ matrix. "Special unitary" means that furthermore the determinant of U equals 1 .

These matrices can be stored in a reduced array, for example keepoing only 10 two lines allows to recompute the third line using the $S U(3)$ properties. This is equivalent to store 12 floating point numbers. An even better choice is given in http://www.ccs.tsukuba.ac.jp/workshop/EP09/, using only 8 floating point numbers. Of course the gain in storage has to be balanced against the cost in additional online computation. return to "color space"
15 return to gauge configurations

[^3]
Chapter 6

Samples from ETMC codes

```
5 void mul_one_pm_imu_sub_mul_gamma5(spinor * const l, spinor * const k,
            spinor * const j, const double _sign){
        complex z,w;
        int ix;
        double sign=1.;
10 spinor *r, *s, *t;
        static su3_vector phi1, phi2, phi3, phi4;
        if(_sign < 0.){
            sign = -1.;
        }
        z.re = 1.;
        z.im = sign * g_mu;
        w.re = 1.;
20 w.im = -sign * g_mu;
    #if (defined BGL3 && defined XLC)
        __alignx (16,1);
        __alignx(16,k);
        __alignx(16,j);
25
    #endif
    /************ loop over all lattice sites *************/
    for(ix = 0; ix < (VOLUME/2); ix++){
        r = k+ix;
        s = j+ix;
        t = l+ix;
        /* Multiply the spinorfield with 1+imu\gamma_5 */
    #if (defined SSE22 || defined SSE32)
```

```
        _prefetch_spinor((r+predist));
        _prefetch_spinor((s+predist));
        _sse_load_up((*r).s0);
        _sse_vector_cmplx_mul(z);
        _sse_load((*s).s0);
        _sse_vector_sub_up();
        _sse_store_nt_up((*t).s0);
        _sse_load_up((*r).s1);
        _sse_vector_cmplx_mul_two();
        _sse_load((*s).s1);
        _sse_vector_sub_up();
        _sse_store_nt_up((*t).s1);
        _sse_load_up((*r).s2);
        _sse_vector_cmplx_mul(w);
        _sse_load((*s).s2);
        _sse_vector_sub();
        _sse_store_nt_up((*t).s2);
        _sse_load_up((*r).s3);
        _sse_vector_cmplx_mul_two();
        _sse_load((*s).s3);
        _sse_vector_sub();
        _sse_store_nt_up((*t).s3);
    #else
        _complex_times_vector(phi1, z, (*r).s0);
        _complex_times_vector(phi2, z, (*r).s1);
        _complex_times_vector(phi3, w, (*r).s2);
        _complex_times_vector(phi4, w, (*r).s3);
        /* Subtract s and store the result in t */
        /* multiply with gamma5 included by */
        /* reversed order of s and phi3|4 */
        _vector_sub((*t).s0, phi1, (*s).s0);
        _vector_sub((*t).s1, phi2, (*s).s1);
        _vector_sub((*t).s2, (*s).s2, phi3);
        _vector_sub((*t).s3, (*s).s3, phi4);
    #endif
    }
}
```

return to Wilson-twisted Dirac operator
/* \$Id: Hopping_Matrix.c,v 1.43 2007/08/29 08:39:29 urbach Exp \$ */
$/ *$

* Hopping_Matrix is the conventional Wilson
* hopping matrix

```
    *
    * \kappa\sum_{\pm\mu}(r+\gamma_\mu)U_{x,\mu}
    *
    * for ieo = 0 this is M_{eo}, for ieo = 1
    * it is M_{oe}
    *
    * l is the number of the output field
    * k is the number of the input field
    *
        ioff = 0;
    }
    else{
        ioff = (VOLUME+RAND)/2;
    }
    I2 (VOLUNE+RAND)/2-ioff
    /***************** loop over all lattice sites *****************/
    for (icx = ioff; icx < (VOLUME/2 + ioff); icx++){
        ix=g_eo2lexic[icx];
45
```

```
    r=l+(icx-ioff);
    /*********************** direction +0 **************************/
    iy=g_iup[ix] [0]; icy=g_lexic2eosub[iy];
```

```
        sp=k+icy;
            if ((defined _GAUGE_COPY))
            up=&g_gauge_field_copy[icx] [0];
# else
    up=&g_gauge_field[ix] [0];
# endif
    _vector_add(psi,(*sp).s0,(*sp).s2);
    _su3_multiply(chi,(*up),psi);
    _complex_times_vector(psi,ka0,chi);
    _vector_assign(temp.s0,psi);
    _vector_assign(temp.s2,psi);
    _vector_add(psi,(*sp).s1,(*sp).s3);
    _su3_multiply(chi,(*up),psi);
    _complex_times_vector(psi,ka0,chi);
    _vector_assign(temp.s1,psi);
    _vector_assign(temp.s3,psi);
    /*********************** direction -0 ************************/
    iy=g_idn[ix][0]; icy=g_lexic2eosub[iy];
    sm=k+icy;
    # if ((defined _GAUGE_COPY))
um = up+1;
    # else
        um=&g_gauge_field[iy] [0];
            endif
    _vector_sub(psi,(*sm).s0,(*sm).s2);
    _su3_inverse_multiply(chi,(*um),psi);
    _complexcjg_times_vector(psi,ka0,chi);
```

```
_vector_add_assign(temp.s0,psi);
_vector_sub_assign(temp.s2,psi);
_vector_sub(psi,(*sm).s1,(*sm).s3);
_su3_inverse_multiply(chi,(*um),psi);
_complexcjg_times_vector(psi,ka0,chi);
_vector_add_assign(temp.s1,psi);
_vector_sub_assign(temp.s3,psi);
\(/ * * * * * * * * * * * * * * * * * * * * * * * *\) direction +1 \(* * * * * * * * * * * * * * * * * * * * * * * * / ~\)
```

iy=g_iup[ix][1]; icy=g_lexic2eosub[iy];
$\mathrm{sp}=\mathrm{k}+\mathrm{icy}$;
\# if ((defined _GAUGE_COPY))
up=um+1;
\# else
up+=1;
\# endif
_vector_i_add(psi,(*sp).s0,(*sp).s3);
_su3_multiply(chi,(*up),psi);
_complex_times_vector(psi,ka1,chi);
_vector_add_assign(temp.s0,psi);
_vector_i_sub_assign(temp.s3,psi);
_vector_i_add(psi,(*sp).s1,(*sp).s2);
_su3_multiply(chi,(*up),psi);
_complex_times_vector(psi,ka1,chi);
_vector_add_assign(temp.s1,psi);
_vector_i_sub_assign(temp.s2,psi);
$/ *$ direction -1
iy=g_idn[ix][1]; icy=g_lexic2eosub[iy];

```
        sm=k+icy;
    # ifndef _GAUGE_COPY
        um=&g_gauge_field[iy] [1];
    # else
        um=up+1;
    # endif
    _vector_i_sub(psi,(*sm).s0,(*sm).s3);
    _su3_inverse_multiply(chi,(*um),psi);
    _complexcjg_times_vector(psi,ka1,chi);
    _vector_add_assign(temp.s0,psi);
    _vector_i_add_assign(temp.s3,psi);
    _vector_i_sub(psi,(*sm).s1,(*sm).s2);
    _su3_inverse_multiply(chi,(*um),psi);
    _complexcjg_times_vector(psi,ka1,chi);
    _vector_add_assign(temp.s1,psi);
        _vector_i_add_assign(temp.s2,psi);
    return to Wilson-twisted Dirac operator
        /*********************** direction +2 **************************/
        iy=g_iup[ix] [2]; icy=g_lexic2eosub[iy];
        sp=k+icy;
        if ((defined _GAUGE_COPY))
        up=um+1;
    # else
        up+=1;
35 # endif
        _vector_add(psi,(*sp).s0,(*sp).s3);
        _su3_multiply(chi,(*up),psi);
        _complex_times_vector(psi,ka2,chi);
        _vector_add_assign(temp.s0,psi);
        _vector_add_assign(temp.s3,psi);
        _vector_sub(psi,(*sp).s1,(*sp).s2);
45
```

```
    _su3_multiply(chi,(*up),psi);
    _complex_times_vector(psi,ka2,chi);
    _vector_add_assign(temp.s1,psi);
    _vector_sub_assign(temp.s2,psi);
            else
            up+=1;
# endif
_vector_i_add(psi,(*sp).s0,(*sp).s2);
```

```
    _su3_multiply(chi,(*up),psi);
    _complex_times_vector(psi,ka3,chi);
    _vector_add_assign(temp.s0,psi);
    _vector_i_sub_assign(temp.s2,psi);
    _vector_i_sub(psi,(*sp).s1,(*sp).s3);
    _su3_multiply(chi,(*up),psi);
    _complex_times_vector(psi,ka3,chi);
    _vector_add_assign(temp.s1,psi);
    _vector_i_add_assign(temp.s3,psi);
    /************************ direction -3
    iy=g_idn[ix][3]; icy=g_lexic2eosub[iy];
    sm=k+icy;
    # ifndef _GAUGE_COPY
        um = &g_gauge_field[iy] [3];
    # else
        um = up+1;
    # endif
25
    }
}
/* end of If defined SSE2 */
45
```

```
    #endif /* thats _USE_HALFSPINOR */
5 end Hopping_matrix.c
Deflation codes
```

```
    static void random_fields(const int Ns) {
```

 static void random_fields(const int Ns) {
 int i, j, ix;
 int i, j, ix;
 float r,s[24];
 float r,s[24];
 double *t;
 double *t;
 r=(float)(1.0/sqrt(24.0*(double)(VOLUME)));
 r=(float)(1.0/sqrt(24.0*(double)(VOLUME)));
 for (i=0;i<Ns;i++) {
 for (i=0;i<Ns;i++) {
 t=(double*)(dfl_fields[i]);
 t=(double*)(dfl_fields[i]);
 for (ix = 0; ix < VOLUME; ix++){
 for (ix = 0; ix < VOLUME; ix++){
 ranlxs(s,24);
 ranlxs(s,24);
 for (j = 0; j < 24; j++) {
 for (j = 0; j < 24; j++) {
 (*t)=(double)(r*(s[j]-0.5f));
 (*t)=(double)(r*(s[j]-0.5f));
 t+=1;
 t+=1;
 }
 }
 }
 }
 }
 }
 return;
 return;
 }
    ```
    }
```

 static char const rcsid[] = "\$Id: Hopping_Matrix.c,v 1.43 2007/08/29 08:39:29 urbach Exp
 15
return to deflation

Bibliography

[1] Local coherence and deflation of the low quark modes in $Q C D$ M. Luscher JHEP07 081 (2007)

[^0]: ${ }^{1}$ In the case of twisted quarks we write together the u and d quark into the isospon space. This leads in fact to a twice larger dimension of the vector space, $24 * N$.
 ${ }^{2}$ In the case of twisted quarks it is a $24 * N \times 24 N$ matrix.

[^1]: ${ }^{1}$ In subroutine solver/generate_dfl_subspace.c in HMC/ETMC package, v5.0; random_fields(Ns)

[^2]: ${ }^{2} N$ being the number of sites of the lattice

[^3]: ${ }^{1} \delta_{\mu \nu}=1$ for $\mu=\nu$ and $\delta_{\mu \nu}=0$ for $\mu \neq \nu$

