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QCD in the IR

« QCDis « free » in the UV and confining in the IR. Hence the
interest in IR behaviour. There exist different models for
confinement which usually imply some consequences about the
IR behaviour of Green functions.

« Zwanziger’s conjecture that confinement has to do with Gribov
horizon has such implications.



Existing tools ?

 There are two sets of very usefus analytic relations to learn about QCD in
the IR: Ward-Slavnov-Taylor (WST) identities and the infinite tower of

Dyson-Schwinger (DS) integral equations. Lattice QCD give also essential
numerical indications.

The best would be to have an analytic solution, however this is not
possible:

« WST relates Green-Functions, not enough constraints.

« DS are too complicated, highly non linear, it is not known how many
solutions exist, but there is presumably a large number.

Common way out ?

e Use truncated DS with some hypotheses about vertex functions and
sometimes compare the result to LQCD



WE PREFER

1- Combine informations from LQCD and analytic
methods: not only using LQCD as an a posteriori
check, but use it as an input for DSE. We believe that
this allows a better control on systematic uncertainties of
all methods.

2- Use WST identities (usually overlooked). This however
leads today to an unsolved problem.

3- 1 and 2 are complemented with mild regularity
assumptions about vertex functions

4- Take due care of the UV behaviour (known since
QCD is asymptotically free) and use a well defined

renormalisation procedure (no renormalisation at u=0
because of possible IR singularities).



NOTa*ionS (7 latin languages glodt co « fantomes, jantasmas »)

« G(p?) is the bare gluon dressing function, = p2G®)(p?), G?)(p?)

being the gluon propagator, ¢ Like GLUON; Z,(u?)= G(u?) [MOM
renormalisation constant of the gluon propagator]

(frequent notation (fn): D(p?)instead of G(2)(p?)),

e F(p?)is the bare ghost dressing functiof; = p2F@)(p2), F@(p?)

being the ghost propagator, F Like FANTOME; Z4(u?)= F(u?) [MOM
renormalisation constant of the ghost propagator]

(fn: G(p?)instead of F(3)(p?))
* Inthe deep IR it is assumed G(p?) x (p?)=*c
(fn: p2D(p?) o (p?)* or (p2)°9}; 0Lg=2K)

e Inthe deep IR it is assumed F(p?) « (p?)F
(fn: p2 G(p?)  1/(p?)*eor (p?)°9"; Olp=-K )



NON-PERTURBATIVE DEFINITIONS OF
THE STRONG COUPLING CONSTANT

 Compute a three-gluon or ghost-ghost-gluon Green function, in

a well defined kinematics depending on a scale u, and the gluon
and ghost propagators.

From there compute the corresponding bare vertex
function I

o Then: gg(u?) = g,G(u2)¥2 I’y or g (u2) =g, F (u2) G (u2)"2 I'

Special and preferred case (Von Smekal) : one
vanishing ghost momentum. Taylor: I'g=1

g7 (u?)=go F (u?) G (u2)"2
o (w?) = go?/(4m) F (u?)? G (u?)



F(p?)?G(p?) is thus proportional to o (u?)
Lattice indicates ag ~1, a~ 0_ , F(u?)?G(u?) =0, g'(u) = 0

BUT

A frequent analysis of the ghost propagator DS equation

Leads to 20 + ag=0 (fn: ap =2 agor 8,=-28,= 2x) i.e. F(p?)?G(p?) —ct
and F(p?) — =

In contradiction with lattice

This i a strong, non truncated BS equation W hat i$ goilng on 7
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Two solutions to Ghost prop DSE

The non-truncated ghost propagator DS equation
It is also a WST equation !!!

We will first prove that there are two types of solutions,
20(,: + OLG=O, OLF<O (fn: ap =2ag0r or §,=-2 = 2k; « conformal solution »)
F(p?)2G(p?) —ct #0 and ; In disagreement with lattice

=0 (fn: a.5=0, « disconnected solution ») F(p2) —ct #0 In fair

agreement with lattice, see recent large lattices: I.L. Bogolubsky, et al.
arXiv:0710.1968 [hep-lat], A. Cucchieri and T Mendes arXiv:0710.0412 [hep-

lat], and 1n agreement with WST

We will next show via a numerical study that solution | (lI)
are obtained when the coupling constant is equal (non-
equal) to a critical value.
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 From anomalous dimensions it is easy to see that the loop is UV divergent. It needs a careful
renormalisation (the subscript R stands for renormalised)

or to use a subtracted DSE with two different external m Ll N d“qd ( _ (A;'Q)22>
omenta, thus cancelling the UV divergence. . (fR(kL))Z)HFR((klz) o ()211) o k2 q

, o N R\g — R 1R\4. R RI\Gg—R 1R\4, R
« 1/F-1/F’ =g? | (G-G’)F " kinematics = [ (D N (R0, ]Fn(qz)

20 + ag=0 (I). Butif F=F’ in the deep IR, i.e. if F —ct #0,

the dimensional argument fails since the power o does not appear in the lhs.
This makes the point: ZOLF + og= 0 (') unless OLF=0

« Solution (l) also imposes an additional constraint on the value of g2:

s dq (. (k9)?\[Crl(a - k) Hyr(a,k)
Fag® = 23~ Negn / @) (1 k2q2)l (CET3RE ]

23 is the ghost prop renormalisation. It cancels the UV divergence.
When k—> 0 the |hs o (k2)™@F, Z; is independent of k.
If O < 0, taking k—0, Z, has to be matched by the integral Z3= g2 Integral(k=0),

where g?=N_gr?Z,
This leads to a well defined value for the coupling constant and the relation



J. C. R. Bloch, Few Body Syst. 33 (2003) 111 [arXiv:hep-ph/0303125]

20 + 0.5=0 (fn: ap =2 ag), F(p?)?G(p?) —ct #0, follows from a simple dimensional
argument.

1. If 0. = 0, the same integral is equal to:  -1/F(0) =g? Integral(k=0),
the coupling constant now also deper Z30n F(0) which is finite non zero.

In the small k region, F(k2)=Fg(0) + ¢ (k) “r and now the dimensional
argument gives O = Ol

If ag=1then F(k?)=Fg(0) + c k? log(k?)

To summarise, adding thar G(p?) —0 (see lattice, late):

. If 0l < 0, 20 + a5=0, F(p?)?G(p?) —ct #0 and fixed coupling
constant at a finite scale; o;=-20,.=2k

From arXiv:0801.2762, Alkofer et al, -0.75 <o <-0.5, 1s0.5<1.5
1. if Oz =0, F(p?) —ct #0 o’ = a.g and no fixed coupling constant

Notice: solution Il agrees rather well with lattice !!



Numerical solutions to Ghost prop DSE

1 1 C 2~ [ dq (k.q)?
7~ z=—Netph | ow |\ - Tz 2
a 41 Fr(k?)  Fp(k') (2m) k2 q

~ dv [GR((q — k)?)Hir(g.k)  Gr(lg —*)*)Hir(g, k’)] Fa(d?)
- - - R - - -— —— - — 232 — y2)\2
- Ck}"b - I A ;,k cho ) l:k (lg—k)?) ((q —*)?)

 To solve this equation one needs an input for the gluon
propagator Gy (we take it from LQCD, extended to the UV via

perturbative QCD) and for the ghost-ghost-gluon vertex H,:

regularity is usually assumed from Taylor identity and confirmed by
LQCD.

« To be more specific, we take H,; to be constant, and G from lattice
data interpolated with the a;=1 IR power. For simplicity we subtract at
k'=0. We take u=1.5 GeV.The equation becomes

o~

F(lkz) _ ﬁ:o) _/‘ diq ( (k.q)z) [GR((Q— k)?) GR((Q)Z)‘ F(¢?)

et " ke )L (a—k2)2 (9?7

where F(k)=g (1) Fy(k, u). Notice that F(u)=g(w), with g
defined as

9%=N.9r?z1Hr= N.9g?Z3Z5°H



« We find one and only one solution for any positive value of
F(0). F(0)=cc corresponds to a critical value:

9.2 = 10m%/(Fg2(0) Gr®(0)) (fn: 1072/(Dg(0) lim p2Gx(p?))

J. C. R. Bloch, Few Body Syst. 33 (2003) 111 [arXiv:hep-ph/0303125]

e This critical solution corresponds to Fg(0)= «, It is the solution
|, with 20+ 05=0, F(p2)2G(p2) —ct #0, a diverging ghost dressing
function and a fixed coupling constant.

* The non-critical solutions, have Fg(0) finite, i.e. =0, the
behaviour Fx(k?)=F(0) + ¢ k? log(k?) has been checked.

 Not much is changed if we assume a logarithmic divergence of
the gluon propagator for k— 0: F;(k2)=F(0) - ¢’ k2 log?(k?)
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Flgure 2: Comparison between the lattice SU(3) data at 3 = 5.8 and w1th a volume
32* for the ghost form factor and our continuum SD prediction renormalised at pu =

1.5 GeV for G~

(broken line), which is obviously excluded.

= 29. (solid line) ; the agreement is striking : also shown is the singular
solution at §° = 33.198....

* The input gluon propagator is fitted from LQCD. The DSE is solved numerically for
several coupling constants. The resulting F is compared to lattice results. For

g?=29, i.e. solution Il (
(FR(O) |nf|n|te, 2(X.F + (X'G:O)

F(0) finite, a-=0
, dotted line, does not fit at al

) the agreement is striking. The solution |



F2(p)G(p): the dotted line corresponds to the critical
coupling constant. It 1s solution I, goes to a finite
non zero value at p —0; the full line corresponds

to the g2 which fits best lattice data. It corresponds to
Solution II, F?(p)G(p) —0 when p —0.

D001 0,001 001 0.1 1 10
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D(q?)

Ghost and gluon propagator from lattice,
(recent results)

Gluon propagator Ghost dressing function
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It results ot (U?) < w? when u — 0



Ghost and aluon propagator from lattice in strong coupling

V <M(0) >2, D(0), d (N,21) V < M(0)° >
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Gluon propagator at p=0, strong coupling

as a function of the inverse volume

Upper bound
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Ghost propagator

fit: [a - b log (p2+c2)]/p2

ucchieri-Mendes arXiv:09044033
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Strong coupling: 3=0




So what 7

Lattice favours solution Il (finite ghost dressing
function and vanishing coupling constant)

Possible loopholes in lattice calculations in the deep IR ? The
discussion turns a little « ideological ». We should stay cautious about
the deep infrared, but the trends are already clear around 300 MeV.
Could there be a sudden change at some significantly smaller scale ?
Why not ? But this looks rather far-fetched.

The Gribov-horizion based interpretation of confinement is then
In bad shape.

Today we can’t say more



ULTRAVIOLET

Theory stands here on a much stronger ground
The 1ssue 1s to compute Agcp to be compared to
Experiment. There are several ways of computing

AQCD.
I§ THIS UNDERC CONTROL ?



From o (u?) to Ays

Compute o (u?) = go?/(4n) F (u?)? G (u?)
from there compute Aycp
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Figure 2: {a) Plot of Az (in GeV) computed by the inversion of the four-loop percurbative formula
e, (23) as & funetion of the square of the momentum (in GeV?); the coupling is estimated from the lattice
data through eq. (9], (b} Same ag plot {a) except for applying the non-perturbative formula eq. (33) for
the coupling and looking for the ghion condensate generating the best platean over 9 < p® < 33 GeV2,
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<A? A,'>condensate

« <Af A,'>is the only dimension-2 operator in Landau
gauge ThIS makes it easier to apply Wilson
expansion to different quantities. <A?, A;*> should be

the same for all quantities and the Wllson coefficien
IS calculable. Condensate

v o (12)= 0P (u2)(1+9/u2 (Log(u?/A2))944g,2/32 <AZg
e We vary the coefficient multiplying 1/u?, compute Ayg(u?) from

Pt (u?)= a2 (u?)/(1+c/u?) using the three loop formula and fit ¢ to
get a plateau on the resulting A,,g(u?) .

e This gives both an estimate of Aygand of <AaM A_n>



<A? A,'>condensate

« <AZ A,'>is the only dimension-2 operator in Landau
gauge. This makes it easier to apply Wilson
expansion to different quantities. <Az A, *> should be

the same for all quantities and the Wilson coeffiger
is calculable. S

¢ o ()= oot (u2) (1»F/u2 (Log(u?/A2))944g 2/32 ] <AZ>,

e We vary the coefficient multiplying 1/u?, compute Ayg(u?) from

Pt (u?)= a2 (u?)/(1+c/u?) using the three loop formula and fit ¢ to
get a plateau on the resulting A,,5(u?) .

e This gives both an estimate of Aygand of <AaM A_n>



Lattice artefacts and scaling

Hypercubic artefacts: The dependence of any lattice quantity as
a function of p? is far from smooth, due to very different « geometries ».
The H4 symmetry group of the lattice is only a subgroup of O(4). For
example momenta 2r(2,0,0,0)/L and 2x(1,1,1,1)/L have the same p?

but are not related by H4 symmetry.
We define the H4 invariants p[2”]=§pu2” and expand, for example

Omeas (pz,p[4],p[6],) - aT,'Btt (p2) + C4 azp[4] + a4C6 p[6]

2.3

2.1

19

1.7

15

This being done the dependence in p? is very smooth below some
limiting value of a2p?, but there are still O(4) invariant lattice artifacts
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Lattice artifacts and scaling

* |In order to have enough lever arm to study the
dependence in u, we combine several lattice spacing.
The finer lattice spacings allow to go higher momenta
where 1/ u4 non-pertrubative contributions are

reduced.

« We match the plots using ratios of lattice spacing
taken from r,, or we can fit the ratio of lattice spacings
from the matching of o, (u?) from different lattice

spacings. Both methods agree fairly well.
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Figure 3: {a) Plot of or defined by ag. (9) in terms of the square of the rencrmalization momentum:
the red solid line is computed with ag. (23] with fepe = 214 MeV, the blue one with eg. (23) for the
same Mg and the data are obtained from the lattice data set-up in table 1. (b} The same but with some
additional lattice estimates for the coupling at very high momenta (300-500 GeV'?) taken from [49].

[@] A.Sternhed:, K. Maltman, L. von Smekal, A, G. Williams, E. M. Ilgenfritz and M. Muller-Preussker,
Pof LAT2007 (2007) 258 [arXiv:0710. 2985 [hep-lat]|.
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Different estimates of Ay s (u?/[GeV?])

guenched case

AL = 048 Mev « The non perturbative contribution is sizeable !!!
gridfla = 51576V . o (u?) ~ o P (u?)(1+1.4/u?) (1.4 % at 10 GeV)

« There is a fair agreement from very different

estimates.
T [this work] | Asym. -g [5] | Sym. d-g 3] | FIG 2] | [
Age (MeV) 2T DA0(15) D33(28) D70(20) | 238(19)
VA2 g, (GeV) 1A4(17] 2.3(6) 1.0(3] 1.3(4] -

Table 3: Comparison of estimates of Az obtained from the analysis of the ghost-gluon vertes in this

work (Aret column], the asymmetric 3-gluon vertex (second), the eymmetric 3-gluon vertex (third), the

ratio of gluon and ghost dressing functions (fourth) and with the Schridinger functional method (last ).

The gluom condenzate n:.d.i::ﬂIJJ has been obtained at the renormalization momentum g = 10 GeV, for the

sake of comparison with the other estimates, from eq. (35) by applying ¢°(p® = 100 GeV?)/dx = 0.15.,
[2] M. Luscher, B. Sommer, P. Weisz and 1. Walff, Nucl Phys. B 413 (1904] 451; 3 Capitani,

M. Luscher, B. Sommer saod H. Wittig [ALPHA Collshorstion), Nud. Phys. B 544 (1900) 830
[arXivhep-Lat /081 0083],



Unquenched case, Nf=2 twisted mass
configurations (ETMC)

‘.i- 0.5 “'-"n

]
g !
Ny 0.4

. . . !.--!. A P:
2 3 4 5 &

0.2 0.2 0.6 0.8 1 1.2 1.2 1.4

Figure 1: the QCD coupling defined by Eq. (3) from the three lattice data sets employed: red squares
stand for 7 = 4.2, green ones for 3 = 4.05 and blue for 5 = 3.90. Right (left) plot shows estimates
for momenta above (below) 10 GeV2. the physical value of the momentum in r-axis is obtained
by applying the ratios of lattice sizes in tab. 1 and a(3.9)~! = 2.301GeV .

This note | String tension | deviation (%))
a(3.9)/a(4.05) | 1.223(4) 1.277 4.2
a(3.9) /a(4.2) 1.504(4) 1.547 2.8




Unquenched A5 (u?/[GeV?])

0.38}
0.367T
0.3471

0.32}

Fignre 2: Agpz derived from confronting the lattice wvalue of ar with the perturbative4OPE
prediction, in terms of the momentum where ap 15 estimated from the lattice, as described in
ref. [1].

Apr = 267 +11 MéV ; g 2<A2=9 6(5) GeV?



Conclusions

 IR: The ghost propagator Dyson-Schwinger equation allows
for two types of solutions,

l) with a divergent ghost dressing function and a finite non
zero F2G, i.e. the relation 20 + a5=0 (fn: oy =2 ag),
« conformal solution »;

II)  with a finite ghost dressing function and the relation o =0
(fn: a5 =0), « decoupled solution » and a vanishing F?G
Lattice QCD clearly favors Il)

. UV: o.(u?) is computed from gluon and ghost propagators.

Discretisation errors seem under control. Perturbative scaling is achieved
only at about 3 GeV (small lattice spacings) provided a sizeable
contribution of <A2> condensate is taken into account. Different

estimates of A5 and of the condensate agree failry well.

Extension under way to the unquenched case



Back-up slide What do we learn from big lattices ?

N3 ac N? ac N3 aG N? ac
1403  0.073(4) 484+ 0.093(7) 140°  0.13(2) 48%  0.19(4)
200° 0.051(3) 56%  0.063(6) 200°  0.06(2) 56 0.18(4)
240°  0.003(3) 64*  0.049(9) 240°  0.10(2) 64*  0.17(4)
320°  -0.021(9) 80*  0.052(5) 320° 0.01(5) 80* 0.15(2)

112%  0.038(6)
128*  0.016(5)

112%  0.10(7)
128* 0.06(3)

Table 1: Table for the ghost propagator IR exponent ag, in the 3d and 4d cases, obtained using either the
two smallest nonzero momenta (left) or the third and fourth smallest nonzero momenta (right).

Attilio Cucchieri, Tereza Mendes.Published in PoS (LATTICE 2007) 297. arXiv:0710.0412 [hep-lat]
here a.= - o (in our notations) = - &,

|

o~
S

Gluon propagator
L=64,72,80, SA
Ul“l T llill"' T lllIl"[ T LI III]
o L=64, 14 cmfs
n =72, 20 cmfa T
+ L=80, 215 confa

13U 1o

[.L. Bogolubsky, E.M. Ilgenfritz,

M. Muller-Preussker, A. Sternbeck
Published in PoOS(LATTICE-2007)290.
arXiv:0710.1968 [hep-lat]

They find Olg=-0.174 which seems at

odds with both OLg=0 and OLg<-0.5

But the fit is delicate, the power behaviour
1s dominant, if ever, only on a small domain
of momenta.



Back-up slide

Ghost propagator

Scatterplotof:  1=56,64,72,80,  SA comparison of the lattice data

. T I LI I I I I I l I I I L ' I .
i 1 ofrefarXiv:0710.1968
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ool . Tood, 14 confs| | w1th our solution
- L=72, 3confs | { arXiv:0801.2721.
- L=80, 3 confs 1
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Back-up slide
IR Ghost propagator from WST 1dentities

qZ_q_. -—O._’.f = 2 _ —’r—o—ff F(pz)"Y(qnpv7) = F(72)X(q~71 p)

Xlg.pr) = alg,pr) = (r-p) blg.pir) + (r-q) dlg,pi7)

Identities valid for all covariant gauges
« Assuming X regular when one momentum vanishes, the |hs is regular
when r — 0, then the ghost dressing has to be finite non zero:
F(0) finite non zero, 0g=0 (in: p2G(p?) —~finite#0,a5=0 or , = 0, k=0)

 There is almost no way out, unless the ghost-gluon vertex is singular when
only one momentum vanishes (difficult without violating Taylor’s theorem)

* Does this contradict DS equations ? Lattice ? We do not believe, see later



Back-up slide
IR Gluon propagator from WST identities,

When q —0 1t 1s easy to prove that the lhs vertex function vanishes under mild

regularity assumptions. The rhs goes to a finite limit (see Taylor theorem).Then the
transverse gluon propagator must diverge:

G2(0)==,

OLG<1 (frequent notation: D(p?) — o0 ay <1 or 8y <1;x <0.5)

or a.g="1 with very mild divergences, to fit with lattice indications: G®(0) = finite#0
unless

The three gluon vertex diverges for one vanishing momentum. It might diverge only
in the limit of Landau gauge.

In arXiv:0801.2762, Alkofer et al, it is proven from DS that a.g >= 0, OK



