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Infra-Red

• Infra-red dog
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QCD in the IR

• QCD is « free » in the UV and confining in the IR. Hence the
interest in IR behaviour. There exist different models for
confinement which usually imply some consequences about the
IR behaviour of Green functions.

•  Zwanziger’s conjecture that confinement has to do with Gribov
horizon has such implications.

Berlin, June 15, 2009



Existing tools ?

• There are two sets of very usefus analytic relations to learn about QCD in
the IR: Ward-Slavnov-Taylor (WST) identities  and the infinite tower of
Dyson-Schwinger (DS) integral equations. Lattice QCD give also essential
numerical indications.

The best would be to have an analytic solution, however this is not
possible:

• WST relates Green-Functions, not enough constraints.

• DS are too complicated, highly non linear, it is not known how many
solutions exist, but there is presumably a large number.

                                Common way out ?
• Use truncated DS  with some hypotheses about vertex functions and

sometimes compare the result to LQCD



WE PREFER

1- Combine informations from LQCD and analytic
methods: not only using LQCD as an a posteriori
check, but use it as an input for DSE. We believe that
this allows a better control on systematic uncertainties of
all methods.

2- Use WST identities (usually overlooked). This however
leads today to an unsolved problem.

3- 1 and 2 are complemented with mild regularity
assumptions about vertex functions

4- Take due care of the UV behaviour (known since

QCD is asymptotically free) and use a well defined
renormalisation procedure (no renormalisation at µ=0
because of possible IR singularities).



Notations (In latin languages ghost is « fantômes, fantasmas »)

• G(p2) is the bare gluon dressing function, = p2G(2)(p2), G(2)(p2)
being the gluon propagator, G like gluon; Z3(µ2)= G(µ2) [MOM
renormalisation constant of the gluon propagator]

(frequent notation (fn): D(p2)instead of G(2)(p2)),

• F(p2) is the bare ghost dressing function, = p2F(2)(p2), F(2)(p2)
being the ghost propagator, F like fantôme; Z3(µ2)= F(µ2) [MOM
renormalisation constant of the ghost propagator]

(fn: G(p2)instead of F(2)(p2))

• In the deep IR it is assumed G(p2) ∝ (p2)αG

(fn: p2 D(p2) ∝ (p2)αD   or (p2)δgl; αG=2κ)

• In the deep IR it is assumed F(p2) ∝ (p2)αF

(fn: p2 G(p2) ∝ 1/(p2)αG or (p2)δgh ; αF=-κ )

~ 



Non-perturbative definitions of
the strong coupling constant

• Compute a three-gluon or ghost-ghost-gluon Green function, in
a well defined kinematics depending on a scale µ, and the gluon
and ghost propagators.

• From there compute the corresponding bare vertex
function ΓB

• Then: gR (µ2) = g0G(µ2)3/2 Γ’B   or gR (µ2) = g0 F (µ2) G (µ2)1/2 ΓB

• Special and preferred case (Von Smekal) : one
vanishing ghost momentum. Taylor: ΓB=1

gT (µ2) = g0 F (µ2) G (µ2)1/2

αT (µ2) = g0
2/(4π) F (µ2)2 G (µ2)

~



 F(p2)2G(p2) is thus proportional to αT (µ2)

Lattice indicates αG ~1, αF~ 0- , F(µ2)2G(µ2) →0, gf(µ) → 0

BUT
A frequent analysis of the ghost propagator DS equation

Leads to 2αF + αG=0 (fn: αD =2 αG or δgl= -2 δgl= 2κ) i.e. F(p2)2G(p2) →ct

and F(p2) → ∞

In contradiction with lattice

This is a strong, non truncated DS equation     What is going on ??

Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared.
I.L. Bogolubsky , E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck arXiv:0901.0736



• The non-truncated ghost propagator DS equation

• It is also a WST equation !!!

• We will first prove that there are two types of solutions,

I. 2αF + αG=0, αF<0 (fn: αD =2αG or or δgl= -2 δgl= 2κ; « conformal solution »)

            F(p2)2G(p2) →ct ≠0 and ;  In disagreement with lattice

II. αF=0 (fn: αG=0, « disconnected solution ») F(p2) →ct ≠0 In fair
agreement with lattice, see recent large lattices: I.L. Bogolubsky, et al.
arXiv:0710.1968 [hep-lat], A. Cucchieri and T Mendes arXiv:0710.0412 [hep-
lat], and in agreement with WST

• We will next show via a numerical study that solution I (II)
are obtained when the coupling constant is equal (non-
equal) to a critical value.

Two solutions to Ghost prop DSE



• From anomalous dimensions it is easy to see that the loop  is UV divergent. It needs a careful
renormalisation (the subscript R stands for renormalised)

 or to use a subtracted DSE with two different external m
omenta, thus cancelling the UV divergence.

• 1/F-1/F’ = g2 ∫(G-G’)F ´ kinematics ⇒

2αF + αG=0 (I).   But if F=F’ in the deep IR, i.e. if F →ct ≠0,

the dimensional argument fails since the power αF does not appear in the lhs.

This makes the point: 2αF + αG= 0 (I) unless αF=0
• Solution (I) also imposes an additional constraint on the value of g2:

             ~
• Z3 is the ghost prop renormalisation. It cancels the UV divergence.

        When k→ 0 the lhs ∝ (k2)-αF, Z3 is independent of k.

I. If αF < 0, taking k→0, Z3 has to be matched by the integral       = g2 Integral(k=0),

where g2=NcgR
2z1

This leads to a well defined value for the coupling constant and the relation

~

~

hep-ph/0507104, hep-ph/06040



2αF + αG=0 (fn: αD =2 αG), F(p2)2G(p2) →ct ≠0, follows from a simple dimensional
argument.

II. If αF = 0, the same integral is equal to:      -1/FR(0) =g2 Integral(k=0),

                the coupling constant now also depends on FR(0) which is finite non zero.

  In the small k region, FR(k2)=FR(0) + c (k2) α’
F  and now the dimensional

argument gives α’F = αG.

 If αG=1 then FR(k2)=FR(0) + c k2 log(k2)

To summarise, adding that G(p2) →0 (see lattice, late):

I. If αF < 0, 2αF + αG=0, F(p2)2G(p2) →ct ≠0 and fixed coupling
constant at a finite scale; αG=-2αF=2κ

   From arXiv:0801.2762, Alkofer et al, -0.75 ≤αF ≤-0.5, 1≤αG ≤1.5

II. if αF = 0, F(p2) →ct ≠0 α’F = αG and no fixed coupling constant

Notice: solution II agrees rather well with lattice !!



Numerical solutions to Ghost prop DSE

• To  solve this equation one needs an input for the gluon
propagator GR (we take it from LQCD, extended to the UV via
perturbative QCD) and for the ghost-ghost-gluon vertex H1R:
regularity is usually assumed from Taylor identity and confirmed by
LQCD.

• To be more specific, we take H1R to be constant, and GR from lattice
data interpolated with the αG=1 IR power. For simplicity we subtract at
k’=0. We take µ=1.5 GeV.The equation becomes

            ~                                                                             ~

where F(k)=g (µ) FR(k, µ). Notice that   F(µ)=g(µ), with g
defined as

   ~                                ~
g2=NcgR

2z1H1R= NcgB
2Z3Z3

2H1B



• ~We find  one and only one solution for any positive value of
F(0). F(0)=∞ corresponds to a critical value:

 gc
2 = 10π2/(FR

2(0) GR
(2)(0)) (fn: 10π2/(DR(0) lim p2GR(p2))

• This critical solution corresponds to  FR(0)= ∞, It is the solution
I,  with 2αF + αG=0, F(p2)2G(p2) →ct ≠0, a diverging ghost dressing
function and a fixed coupling constant.

• The non-critical solutions, have FR(0) finite, i.e. αF = 0, the
behaviour FR(k2)=FR(0) + c k2 log(k2) has been checked.

• Not much is changed if we assume a logarithmic divergence of
the gluon propagator for k→ 0: FR(k2)=FR(0) - c’ k2 log2(k2)



• The input gluon propagator is fitted from LQCD. The DSE is solved numerically for
several coupling constants. The resulting FR is compared to lattice results. For
g2=29, i.e. solution II (FR(0) finite, αF =0) the agreement is striking. The solution I
(FR(0) infinite, 2αF + αG=0) , dotted line, does not fit at all.

Ph. Boucaud, J-P. Leroy, A.Le Yaouanc,
J. Micheli, O. Pene, J. Rodriguez--Quintero
e-Print: arXiv:0801.2721 [hep-ph]

gcrit
2 = 33.198

g g2 = 29



F2(p)G(p): the dotted line corresponds to the critical
coupling constant. It is solution I, goes to a finite
non zero value at p →0; the full line corresponds
to the g2 which fits best lattice data. It corresponds to
Solution II, 2 F2(p)G(p) →0 when p →0.



Ghost and gluon propagator from lattice,
(recent results)

Lattice gluodynamics computation of Landau gauge Green's functions in the deep infrared.
I.L. Bogolubsky , E.M. Ilgenfritz, M. Muller-Preussker, A. Sternbeck arXiv:0901.0736

It results αT (µ2) ∝ µ2 when µ → 0

Gluon propagator Ghost dressing function



Ghost and gluon propagator from lattice in strong coupling

Ghost dressing function

Strong coupling: β=0



So what ?

• Lattice favours solution II (finite ghost dressing
function and vanishing coupling constant)

• Possible loopholes in lattice calculations in the deep IR ? The
discussion turns a little « ideological ». We should stay cautious about
the deep infrared, but the trends are already clear around 300 MeV.
Could there be a sudden change at some significantly smaller scale ?
Why not ? But this looks rather far-fetched.

• The Gribov-horizion based interpretation of confinement is then
in bad shape.

• Today we can’t say more



Ultra-Violet

Theory stands here on a much stronger ground
The issue is to compute ΛQCD to be compared to 
Experiment. There are several ways of computing 
ΛQCD.
 Is this under control ?



From αT (µ
2) to ΛMS

__

Compute αT (µ2) = g0
2/(4π) F (µ2)2 G (µ2)

 from there compute ΛQCD



Λ MS (µ2/[GeV2]), quenched__

Only perturbation theory



Λ MS (µ2/[GeV2]), quenched__

Only perturbation theory

Adding a non perturbative c/p2

term to αT (µ2) (A2 condensate)



<Aa
µ Aa

µ> condensate
• <Aa

µ Aa
µ> is the only dimension-2 operator in Landau

gauge. This makes it easier to apply Wilson
expansion to different quantities. <Aa

µ Aa
µ> should be

the same for all quantities and the Wilson coefficient
is calculable.

• αT (µ2)= αT
pert

 (µ2)(1+9/µ2 (Log(µ2/Λ2))-9/44gT
2/32 <A2>R

• The Wilson coefficient has only been computed at leading log.

• We vary the coefficient multiplying 1/µ2, compute ΛMS(µ2) from

αT
pert

 (µ2)= αT
latt (µ2)/(1+c/µ2) using the three loop formula and fit c to

get a plateau on the resulting ΛMS(µ2) .

• This gives both an estimate of ΛMS and of <Aa
µ Aa

µ>

Condensate

Wilson coefficients



<Aa
µ Aa

µ> condensate
• <Aa

µ Aa
µ> is the only dimension-2 operator in Landau

gauge. This makes it easier to apply Wilson
expansion to different quantities. <Aa

µ Aa
µ> should be

the same for all quantities and the Wilson coefficient
is calculable.

• αT (µ2)= αT
pert

 (µ2) (1+9/µ2 (Log(µ2/Λ2))-9/44gT
2/32       <A2>R

The Wilson coefficient has only been computed at leading log.

• We vary the coefficient multiplying 1/µ2, compute ΛMS(µ2) from

αT
pert

 (µ2)= αT
latt (µ2)/(1+c/µ2) using the three loop formula and fit c to

get a plateau on the resulting ΛMS(µ2) .

• This gives both an estimate of ΛMS and of <Aa
µ Aa

µ>

Condensate

Wilson coefficient



Lattice artefacts and scaling
• Hypercubic artefacts: The dependence of any lattice quantity  as

a function of p2 is far from smooth, due to very different « geometries ».
The H4 symmetry group of the lattice is only a subgroup of O(4). For
example momenta 2π(2,0,0,0)/L and 2π(1,1,1,1)/L have the same p2

but are not related by H4 symmetry.

• We define the H4 invariants p[2n]=∑pµ2n and expand, for example

αmeas (p2,p[4],p[6],..) = αT,latt (p2) + c4 a2p[4] + a4c6 p[6] ….

• This being done the dependence in p2 is very smooth below some
limiting value of a2p2, but there are still  O(4) invariant lattice artifacts

Hyercubic improvedDemocratic

Rawta



Lattice artifacts and scaling

• In order to have enough lever arm to study the
dependence in µ, we combine several lattice spacing.
The finer lattice spacings allow to go higher momenta
where 1/ µ4 non-pertrubative contributions are
reduced.

• We match the plots using ratios of lattice spacing
taken from r0, or we can fit the ratio of lattice spacings
from the matching of αT (µ2) from different lattice
spacings. Both methods agree fairly well.



αT(µ2/[GeV2])



Different estimates of ΛMS (µ2/[GeV2])
quenched case

• The non perturbative contribution is sizeable !!!

αT(µ2) ~ αT
pert(µ2)(1+1.4/µ2) (1.4 % at 10 GeV)

• There is a fair agreement from very different
estimates.



Unquenched case, Nf=2 twisted mass
configurations (ETMC)



Unquenched ΛMS (µ2/[GeV2])

gT
2<A2>=9.6(5) GeV2

Even larger than in quenched



• IR: The ghost propagator Dyson-Schwinger equation allows
for two types of solutions,

I) with a divergent  ghost dressing function and a finite non
zero F2G, i.e. the relation 2αF + αG=0 (fn: αD =2 αG),
« conformal solution »;

II)  with a finite ghost dressing function and the relation αF =0
(fn: αG =0), « decoupled solution » and a vanishing F2G

Lattice QCD clearly favors II)
• UV: αT(µ2) is computed from gluon and ghost propagators.

Discretisation errors seem under control. Perturbative scaling is achieved
only at about 3 GeV (small lattice spacings) provided a sizeable
contribution of <A2> condensate is taken into account.  Different
estimates of ΛMS and of the condensate agree failry well.

Extension under way to the unquenched case

Conclusions



Back-up slide   What do we learn from big lattices ?

Attilio Cucchieri, Tereza Mendes.Published in PoS (LATTICE 2007) 297. arXiv:0710.0412 [hep-lat]
 here αG= - αF (in our notations) = - δgh

I.L. Bogolubsky, E.M. Ilgenfritz, 
M. Muller-Preussker, A. Sternbeck 
Published in PoS(LATTICE-2007)290.
arXiv:0710.1968 [hep-lat]
They find αF=-0.174 which seems at 

odds with both αF=0 and αF≤-0.5
But the fit is delicate, the power behaviour 
is dominant, if ever, only on a small domain
of momenta.



comparison of the lattice data
of ref arXiv:0710.1968
with our solution
arXiv:0801.2721.

Back-up slide



Back-up slide

IR Ghost propagator from WST identities
hep-ph/0007088, hep-ph/0702092

• Assuming X regular when one momentum vanishes, the lhs is regular
when r → 0, then the ghost dressing has to be finite non zero:

F(0) finite non zero, αF=0 (fn: p2G(p2) →finite≠0,αG=0 or δgh = 0, κ =0)

• There is almost no way out, unless the ghost-gluon vertex is singular when
only one momentum vanishes (difficult without violating Taylor’s theorem)

• Does this contradict DS equations ? Lattice ? We do not believe, see later

Cut lines: the external propagator has been cut; p,q,r : momenta

Identities valid for all covariant gauges



 
Back-up slide

IR Gluon propagator from WST identities, hep-ph/0507104, hep-ph/0702092∂: longitudinal propagator, the
third gluon is transverse.

Cut lines: the external
propagator has been cut,
p,q,r : momenta
λνσ: gluons polarisation

When q →0 it is easy to prove that the lhs vertex function vanishes under mild
regularity assumptions. The rhs goes to a finite limit (see Taylor theorem).Then the
transverse gluon propagator must diverge:

G(2)(0)=∞ ,

αG<1 (frequent notation: D(p2) → ∞ αD <1 or δgl <1; κ < 0.5 )

or αG=1 with very mild divergences, to fit with lattice indications: G(2)(0) = finite≠0

unless

The three gluon vertex diverges for one vanishing momentum. It might diverge only
in the limit of Landau gauge.

In arXiv:0801.2762, Alkofer et al, it is proven from DS that αG >= 0, OK


