
Date: June 10, 2016

The micrOMEGAs user’s manual, version 4.1

G. Bélanger1, F. Boudjema1, A. Pukhov2, A. Semenov3.

1) LAPTH, Univ. de Savoie, CNRS, B.P.110, F-74941 Annecy-le-Vieux, France
2) Skobeltsyn Inst. of Nuclear Physics, Moscow State Univ., Moscow 119992, Russia

3) Joint Institute for Nuclear Research (JINR) 141980, Dubna, Russia

Abstract

We give an up-to-date description of the micrOMEGAs functions. Only the

routines which are available for the users are described. Examples on how to use

these functions can be found in the sample main programs distributed with the

code.

Contents

1 Introduction 3

2 Discrete symmetry in micrOMEGAs. 3

3 Downloading and compilation of micrOMEGAs. 4

3.1 File structure of micrOMEGAs. 4
3.2 Compilation of CalcHEP and micrOMEGAs routines. 5
3.3 Module structure of main programs. 6
3.4 Compilation of codes for specific models. 6
3.5 Command line parameters of main programs. 7

4 Global Parameters 7

5 Setting of model parameters, spectrum calculation, parameter display. 9

6 Relic density calculation. 11

6.1 Switches and auxilary routines . 11
6.2 Calculation of relic density for one-component Dark Matter models. 12
6.3 Calculation of relic density for two-component Dark Matter models. 15

7 Direct detection. 15

7.1 Amplitudes for elastic scattering . 15
7.2 Scattering on nuclei . 16
7.3 Auxiliary routines . 17

8 Indirect detection 18

8.1 Interpolation and display of spectra . 18
8.2 Annihilation spectra . 19
8.3 Distribution of Dark Matter in Galaxy. 19
8.4 Photon signal . 20
8.5 Propagation of charged particles. 21

1

9 Neutrino signal from the Sun and the Earth 22

9.1 Comparison with IceCube results . 23

10 Cross sections and decays. 23

11 Tools for model independent analysis 26

12 Constraints from colliders 27

12.1 The Higgs sector . 27
12.2 Searches for New particles . 28

12.2.1 SmodelS . 28
12.2.2 Other limits . 30

13 Additional routines for specific models 30

13.1 MSSM . 31
13.2 The NMSSM . 32
13.3 The CPVMSSM . 33
13.4 The UMSSM . 33

14 Tools for new model implementation. 34

14.1 Main steps . 34
14.2 Automatic width calculation . 35
14.3 Using LanHEP for model file generation. 35
14.4 QCD functions . 36
14.5 SLHA reader . 36

14.5.1 Writing an SLHA input file . 39
14.6 Routines for diagonalisation. 40

15 Mathematical tools. 40

A An updated routine for b → sγ in the MSSM 42

2

1 Introduction

micrOMEGAs is a code to calculate the properties of cold dark matter (CDM) in a generic
model of particle physics. First developed to compute the relic density of dark mat-
ter, the code also computes the rates for dark matter direct and indirect detection.
micrOMEGAs calculates CDM properties in the framework of a model of particle interac-
tions presented in CalcHEP format [?]. It is assumed that the model is invariant under
a discrete symmetry like R-parity (even for all standard particles and odd for some new
particles including the dark matter candidate) which ensures the stability of the lightest
odd particle (LOP). The CalcHEP package is included in micrOMEGAs and used for ma-
trix elements calculations. All annihilation and coannihilation channels are included in
the computation of the relic density. This manual gives an up-to-date description of all
micrOMEGAs functions. The methods used to compute the different dark matter prop-
erties are described in references [?, ?, ?, ?, ?, ?]. These references also contain a more
complete description of the code. In the following the cold dark matter candidate also
called LOP or weakly-interactive massive particle (WIMP) will be denoted by χ.

micrOMEGAs contains both C and Fortran routines. Below we describe only the C-
version of the routines, in general we use the same names and the same types of argument
for both C and Fortran functions. We always use double(real*8) variables for float
point numbers and int(INTEGER) for integers. In this manual we use FD for file descriptor
variables, the file descriptors are FILE* in C and channel number in Fortran. The symbol
& before the names of variables in C-functions stands for the address of the variable. It is
used for output parameters. In Fortran calls there is no need for & since all parameters are
passed via addresses. In C programs one can substitute NULL for any output parameter
which the user chooses to ignore. In Fortran one can substitute cNull, iNull, r8Null

for unneeded parameters of character, integer and real*8 type respectively.
A few C-functions use pointer variables that specify an address in the computer mem-

ory. Because pointers do not exist in Fortran, we use an INTEGER*8 variable whose length
is sufficient to store a computer address.

The complete format for all functions can be found in sources/micromegas.h (for C)
or sources/micromegas_f.h (for Fortran). Examples on how to use these functions are
provided in the MSSM/main.c[F] file.

2 Discrete symmetry in micrOMEGAs.

micrOMEGAs exploits the fact that models of dark matter exhibit a discrete symmetry
and that the fields of the model transform as φ → ei2πXφφ where the charge |Xφ| < 1.
The particles of the Standard Model are assumed to transform trivially under the discrete
symmetry, Xφ = 0. In the following all particles with charge Xφ 6= 0 will be called odd and
the lightest odd particle will be stable. If neutral, it can be considered as a DM candidate.
Typical examples of discrete symmetries used for constructing single DM models are Z2

and Z3. Multi-component DM can arise in models with larger discrete symmetries. A
simple example is a model with Z2×Z ′

2 symmetry, the particles charged under Z2(Z
′
2) will

belong to the first (second) dark sector. The lightest particle of each sector will be stable
and therefore a potential DM candidate. Another example is a model with a Z4 symmetry.
The two dark sectors contain particles with Xφ = ±1/4 and Xφ = 1/2 respectively. The

3

lightest particle with charge 1/4 is always stable while the lightest particle of charge 1/2
is stable only if its decay into two particles of charge 1/4 is kinematically forbidden.
micrOMEGAs assumes that all odd particles have names starting with ’~’, for example,
~o1 for the lightest neutralino. In versions 4.X, to distinguish the particles with different
transformation properties with respect to the discrete group, that is particles belonging
to different ’dark’ sectors, we use the convention that the names of particles in the second
’dark’ sector starts with ’~~’. Note that micrOMEGAs does not check the symmetry of the
Lagrangian, it assumes that the name convention correctly identifies all particles with the
same discrete symmetry quantum numbers.

3 Downloading and compilation of micrOMEGAs.

To download micrOMEGAs, go to
http://lapth.cnrs.fr/micromegas

and unpack the file received, micromegas_4.2.tgz, with the command
tar -xvzf micromegas_4.2.tgz

This should create the directory micromegas_4.2/ which occupies about 67Mb of disk
space. You will need more disk space after compilation of specific models and generation
of matrix elements. In case of problems and questions

email: micromegas@lapth.cnrs.fr

3.1 File structure of micrOMEGAs.

Makefile to compile the kernel of the package
CalcHEP_src/ generator of matrix elements for micrOMEGAs
Packages/ external codes
clean to remove compiled files
man/ — contains the manual: description of micrOMEGAs routines
newProject to create a new model directory structure
sources/ micrOMEGAs code
MSSM model directory
MSSM/

Makefile to compile the code and executable for this model
main.c[pp] main.F files with sample main programs
lib/ directory for routines specific to this model

Makefile to compile the auxiliary code library lib/aLib.a
*.c *.f source codes of auxiliary functions

work/ CalcHEP working directory for the generation of
matrix elements

Makefile to compile the library work/work aux.a
models/ directory for files which specifies the model

vars1.mdl free variables
func1.mdl constrained variables
prtcls1.mdl particles
lgrng1.mdl Feynman rules

4

tmp/ auxiliary directories for CalcHEP sessions
results/

so_generated/ storage of matrix elements generated by CalcHEP
calchep/ directory for interactive CalcHEP sessions

Directories of other models which have the same structure as MSSM/
NMSSM/ Next-to-Minimal Supersymmetric Model [?,?]
CPVMSSM/ MSSM with complex parameters [?,?]
UMSSM/ U(1) extensions of the MSSM [?,?]
IDM/ Inert Doublet Model [?]
LHM/ Little Higgs Model [?]
RHNM/ Right-handed Neutrino Model [?]
SM4/ Toy model with a 4th generation of lepton and neutrino DM
Z3M/ A model with scalar DM and Z3 discrete symmetry— [?,?]
Z4ID/ A model with Z4 symmetry— [?,?]
mdlIndep/ For model independent computation of DM signals

3.2 Compilation of CalcHEP and micrOMEGAs routines.

CalcHEP and micrOMEGAs are compiled by gmake. Go to the micrOMEGAs directory
and launch

gmake

If gmake is not available, then make should work like gmake. In principle micrOMEGAs
defines automatically the names of C and Fortran compilers and the flags for compila-
tion. If you meet a problem, open the file which contains the compiler specifications,
CalcHEP_src/FlagsForSh, improve it, and launch [g]make again. The file is written is
sh script format and looks like

C compiler

CC="gcc"

Flags for C compiler

CFLAGS="-g -fsigned-char"

Disposition of header files for X11

HX11=

Disposition of lX11

LX11="-lX11"

Fortran compiler

FC="gfortran"

FFLAGS="-fno-automatic"

........

After a successful definition of compilers and their flags, micrOMEGAs rewrites the file
FlagsForSh into FlagsForMake and substitutes its contents in all Makefiles of the package.

[g]make clean deletes all generated files, but asks permission to delete FlagsForSh.
[g]make flags only generates FlagsForSh. It allows to check and change flags

before compilation of codes.

5

3.3 Module structure of main programs.

Each model included in micrOMEGAs is accompanied with sample files for C and Fortran
programs which call micrOMEGAs routines, the main.c, main.F files. These files consist
of several modules enclosed between the instructions

#ifdef XXXXX

....................

#endif

Each of these blocks contains some code for a specific problem

#define MASSES_INFO //Displays information about mass spectrum

#define CONSTRAINTS //Displays B_>sgamma, Bs->mumu, etc

#define OMEGA //Calculates the relic density

#define INDIRECT_DETECTION //Signals of DM annihilation in galactic halo

#define LoopGAMMA //Gamma-Ray lines - available only in some models

#define RESET_FORMFACTORS //Redefinition of Form Factors and other

//parameters

#define CDM_NUCLEON //Calculates amplitudes and cross-sections

//for DM-nucleon collisions

#define CDM_NUCLEUS //Calculates number of events for 1kg*day

//and recoil energy distribution for various nuclei

#define NEUTRINO //Calculates flux of solar neutrinos and

//the corresponding muon flux

#define DECAYS //Calculates decay widths and branching ratios

#define CROSS_SECTIONS //Calculates cross sections

#define CLEAN // Removes intermediate files.

#define SHOWPLOTS //Displays graphical plots on the screen

Other modules which require a link to external programs can also be defined, in this
case the path to the required code must be specified, for example

#define LILITH "../Packages/Lilith-1.1.2"

Note that HiggsBounds and HiggsSinals are no longer included in the micrOMEGAs’s
distribution and must be installed separately by the user.

All these modules are completely independent. The user can comment or uncomment
any set of define instructions to suit his/her need.

3.4 Compilation of codes for specific models.

After the compilation of micrOMEGAs one has to compile the executable to compute DM
related observables in a specific model. To do this, go to the model directory, say MSSM,
and launch

[g]make

It should generate the executable main using the main.c source file. In general

6

gmake main=filename.ext
generates the executable filename based on the source file filename.ext. For ext we sup-
port 3 options: ’c’ , ’F’, ’cpp’ which correspond to C, FORTRAN and C++ sources. [g]make
called in the model directory automatically launches [g]make in subdirectories lib and
work to compile

lib/aLib.a - library of auxiliary model functions, e.g. constraints,
work/work_aux.a - library of model particles, free and dependent parameters.

3.5 Command line parameters of main programs.

The default versions of main.c/F programs need some arguments which have to be spec-
ified in command lines. If launched without arguments main explains which parameter
are needed. As a rule main needs the name of a file containing the numerical values of
the free parameters of the model. The structure of a file record should be
Name Value # comment (optional)

For instance, an Inert Doublet model (IDM) input file contains

Mh 125 # mass of SM Higgs

MHC 200 # mass of charged Higgs ~H+

MH3 200 # mass of odd Higgs ~H3

MHX 63.2 # mass of ~X particle

la2 0.01 # \lambda_2 coupling

laL 0.01 # 0.5*(\lambda_3+\lambda_4+\lambda_5)

In other cases, different inputs can be required. For example, in the MSSM with input
parameters defined at the GUT scale, the parameters have to be provided in a command
line. Launching ./main will return

This program needs 4 parameters:

m0 common scalar mass at GUT scale

mhf common gaugino mass at GUT scale

a0 trilinear soft breaking parameter at GUT scale

tb tan(beta)

Auxiliary parameters are:

sgn +/-1, sign of Higgsino mass term (default 1)

Mtp top quark pole mass

MbMb Mb(Mb) scale independent b-quark mass

alfSMZ strong coupling at MZ

Example: ./main 120 500 -350 10 1 173.1

4 Global Parameters

The list of the global parameters and their default values are given in Tables 1, 2.
The numerical value for any of these parameters can be simply reset anywhere in the
code. The numerical values of the scalar quark form factors can also be reset by the
calcScalarQuarkFF routine presented below. Some physical values evaluated by micrOMEGAs also
are presented as global variables, see Table 3.

7

Table 1: Global input parameters of micrOMEGAs

Name default value units comments
deltaY 0 Difference between DM/anti-DM abundances
K dif 0.0112 kpc2/Myr The normalized diffusion coefficient
L dif 4 kpc Vertical size of the Galaxy diffusive halo
Delta dif 0.7 Slope of the diffusion coefficient
Tau dif 1016 s Electron energy loss time
Vc dif 0 km/s Convective Galactic wind
Fermi a 0.52 fm nuclei surface thickness
Fermi b -0.6 fm parameters to set the nuclei radius with
Fermi c 1.23 fm RA = cA1/3 + b
Rsun 8.5 kpc Distance from the Sun to the center of the Galaxy
Rdisk 20 kpc Radius of the galactic diffusion disk
rhoDM 0.3 GeV/cm3 Dark Matter density at Rsun
Vearth 225.2 km/s Galaxy velocity of the Earth
Vrot 220 km/s Galaxy rotation velocity at Rsun
Vesc 600 km/s Escape velocity at Rsun

Table 2: Global parameters of micrOMEGAs: nucleon quark form factors

Proton Neutron
Name value Name value comments
ScalarFFPd 0.0191 ScalarFFNd 0.0273
ScalarFFPu 0.0153 ScalarFFNu 0.011 Scalar form factor
ScalarFFPs 0.0447 ScalarFFNs 0.0447
pVectorFFPd -0.427 pVectorFFNd 0.842
pVectorFFPu 0.842 pVectorFFNu -0.427 Axial-vector form factor
pVectorFFPs -0.085 pVectorFFNs -0.085
SigmaFFPd -0.23 SigmaFFNd 0.84
SigmaFFPu 0.84 SigmaFFNu -0.23 Tensor form factor
SigmaFFPs -0.046 SigmaFFNs -0.046

8

Table 3: Evaluated global variables

Name units comments Evaluated by
CDM1 character name of first DM particle sortOddParticles
CDM2 character name of second DM particle sortOddParticles
Mcdm1 GeV Mass of the first Dark Matter particle sortOddParticles
Mcdm2 GeV Mass of the second DM particles sortOddParticles
Mcdm GeV min(Mcdm1,Mcdm2) if both exist sortOddParticles
dmAsymm Asymmetry between relic density of DM - DM darkOmega[FO]
fracCDM2 fraction of CDM2 in relic density. darkOmega2
Tstart, Tend GeV Temperature interval

for solving the differential equation darkOmega[2]

5 Setting of model parameters, spectrum calculation,

parameter display.

The independent parameters that characterize a given model are listed in the file
work/models/vars1.mdl. Three functions can be used to set the value of these parame-
ters:

• assignVal(name,val)

• assignValW(name,val)

assign value val to parameter name. The function assignVal returns a non-zero value if
it cannot recognize a parameter name while assignValW writes an error message.
• readVar(fileName)

reads parameters from a file. The file should contain two columns with the following
format (see also Section 3.5)

name value

readVar returns zero when the file has been read successfully, a negative value when the
file cannot be opened for reading and a positive value corresponding to the line where a
wrong file record was found.

Note that in Fortran, numerical constants should be specified as Real*8, for example

call assignValW(’SW’, 0.473D0)

A common mistake is to use Real*4.
The constrained parameters of the model are stored in work/models/func1.mdl.

Some of these parameters are treated as public parameters. The public parameters in-
clude by default all particle masses and all parameters whose calculation requires external
functions (except simple mathematical functions like sin, cos ..). The parameters listed
above any public parameters in work/models/func1.mdl are also treated as public. It
is possible to enlarge the list of public parameters. There are two ways to do this. One
can type * before a parameter name to make it public or one can add a special record in
work/models/func1.mdl

9

%Local! |

Then all parameters listed above this record become public. See example in

MSSM/work/models/func1.mdl

The calculation of the particle spectrum and of all public model constraints is done
with:
• sortOddParticles(txt)

which also sorts the odd particles with increasing masses, writes the name of the lightest
odd particle in txt and assigns the value of the mass of the lightest odd particle to the
global parameter Mcdm. This routine returns a non zero error code for a wrong set of
parameters, for example parameters for which some constraint cannot be calculated. The
name of the corresponding constraint is written in txt. This routine has to be called after
a reassignment of any input parameter. These routine was updated for the case of two
DM particles. sortOddParticles fills text parameters CDM1 and CDM2 which present
the name of lightest particle which names are started with one and two tildes respectively.
Mcdm1 and Mcdm2 are masses of these particles. If we have only one kind of DM then for
the absent component Mcdmi = 0 and CDMi=NULL (in Fortran the string if filled by
space symbols).
• qNumbers(pName, &spin2,&charge3,&cdim)

returns the quantum numbers for the particle pName. Here spin2 is twice the spin of
the particle; charge3 is three times the electric charge; cdim is the dimension of the
representation of SU(3)c, it can be 1, 3,−3 or 8. The parameters spin2, charge3, cdim

are variables of type int. The value returned is the PDG code. If pName does not correspond
to any particle of the model then qNumbers returns zero.
• pdg2name(nPDG)

returns the name of the particle which PDG code is nPDG. If this particle does not
exist in the model the return value is NULL. In the FORTRAN version this function is
Subroutine pdg2name(nPDG, pName) and the character variable pName consists of white
spaces if the particle does not exist in the model.
• pMass(pName)

returns the numerical value of the particle mass.
• nextOdd(n, &pMass)

returns the name and mass of the nth odd particle assuming that particles are sorted ac-
cording to increasing masses. For n = 0 the output specifies the name and the mass of the
CDM candidate. In the FORTRAN version this function is Subroutine nextOdd(n,pName,pMass)

• findVal(name,&val)

finds the value of variable name and assigns it to parameter val. It returns a non-zero
value if it cannot recognize a parameter name.

• findValW(name) just returns the value of variable name and writes an error message if
it cannot recognize a parameter name. The variables accessible by these commands are all
free parameters and the constrained parameters of the model (in file model/func1.mdl)
treated as public.

The following routines are used to display the value of the independent and the con-
strained public parameters:
• printVar(FD)

prints the numerical values of all independent and public constrained parameters into FD

10

• printMasses(FD, sort)

prints the masses of ’odd’ particles (those whose names started with ~). If sort 6= 0 the
masses are sorted so the mass of the CDM is given first.
• printHiggsMasses(FD, sort)

prints the masses and widths of ’even’ scalars.

6 Relic density calculation.

6.1 Switches and auxilary routines

•VWdecay,VZdecay
Switches to turn on/off processes with off-shell gauge bosons in the final state for DM an-
nihilation and particle decays. If VW/VZdecay=1, the 3-body final states will be computed
for annihilation processes only while if VW/VZdecay=2 they will be included in coanni-
hilation processes as well. By default the switches are set to (VW/VZdecay=1). 1 Note
that micrOMEGAs calculates the width of each particle only once and stores the result in
Decay Table. A second call to the function pWidth (whether an explicit call or within the
computation of a cross section) will return the same result even if the user has changed
the VW/VZdecay switch. We recommend to call
•cleanDecayTable()
after changing the switches to force micrOMEGAs to recalculate the widths taking into
account the new value of VW/VZdecay. In Fortran, the subroutine
• setVVdecay(VWdecay,VZdecay) changes the switches and calls cleanDecayTable().
The sortOddParticles command which must be used to recompute the particle spec-
trum after changing the model parameters also clears the decay table.

If the particle widths were stored in a SLHA file (Susy Les Houches Accord [?]) down-
loaded by micrOMEGAs, then the SLHA value will be used, the widths then do not de-
pend on the VW/VZdecay switches. To avoid downloading particle widths, one can use
slhaRead(fileName,mode=4) to read the content of the SLHA file, see the description in
Section 14.5.

The temperature dependence of the effective number of degrees of freedom can be set
with
• loadHeffGeff(char*fname)

allows to modify the temperature dependence of the effective number of degrees of freedom
by loading the file fname which contains a table of heff (T), geff (T) . A positive return
value corresponds to the number of lines in the table. A negative return value indicates
the line which creates a problem (e.g. wrong format), the routine returns zero when
the file fname cannot be opened. The default file is std_thg.tab and is downloaded
automatically if loadHeffGeff is not called is user’s main program. Five other files are
provided in the sources/data directory: HP_A_thg.tab, HP_B_thg.tab, HP_B2_thg.tab,
HP_B3_thg.tab, and HP_C_thg.tab. They correspond to sets A, B, B2, B3, C in [?]. The
user can substitute his/her own table as well, if so, the file must contain three columns
containing the numerical values for T , heff , geff , the data file can also contain comments

1Including the 3-body final states can significantly increase the execution time for the relic density

computation.

11

for lines starting with #.
•improveCrossSection(p1,p2,p3,p4, Pcm, &address)

allows to substitute a new cross-section for a given process. Here p1,p2 are the names of
particles in the initial state and p3,p4 those in the final state. Pcm is the center of mass
momentum and address ... This function is useful if for example the user wants to include
her/his one-loop improved cross-section calculation in the relic density computation.

6.2 Calculation of relic density for one-component Dark Matter

models.

All routines to calculate the relic density in version 3 are still available in this version.
For these routines, the difference between the two dark sectors is ignored. These routines
are intended for models with either a Z2 or Z3 discrete symmetry.
• vSigma(T,Beps,fast)

calculates the thermally averaged cross section for DM annihilation times velocity at a
temperature T [GeV],

σv(T) =
T

8π4n(T)2

∫

ds
√
sK1

(√
s

T

)

∑

α̃,β̃

p2
α̃β̃
(s)gα̃gβ̃

(

∑

x≥y

σα̃β̃→xy(s) +
1

2

∑

xγ̃

σα̃β̃→xγ̃(s)
)

(1)

n(T) =
T

2π2

∑

α̃

gα̃m
2
α̃K2(

mα̃

T
), (2)

Here α̃, β̃, γ̃ is used for Odd particles and x,y for Even particles. σα̃β̃→x[γ̃/y] is the cross
section for the corresponding process averaged over the spins of incoming particles and
summed over the spins of outgoing particles. σv should represent the rate of disappear-
ance of Odd particles, therefore when a final state particle has a non-zero decay branching
ratio to odd particles, the annihilation cross section for this process is multiplied by the
corresponding branching ratio into all SM particles. For the same reason cross sections for
semi - annihilation processes contribute to vSigma with a factor 1

2
. K1, K2 are modified

Bessel functions of the second kind, and mα̃ and gα̃ stand for the mass and the number of
degrees of freedom of particle α̃. Note, that if α̃ 6= β̃ that each σα̃β̃ term will be presented
twice. The value for σv is expressed in [pb · c]. The parameter Beps defines the criteria
for including coannihilation channels as for darkOmega described below. The fast = 1/0
option switches between the fast/accurate calculation. The global array vSigmaTCh con-
tains the contribution of different channels to vSigma. vSigmaTCh[i].weight specifies
the relative weight of the ith channel,
vSigmaTCh[i].prtcl[j] (j=0, 4) defines the particles names for the ith channel.
The last record in vSigmaTCh array has zero weight and NULL particle names. In the For-
tran version, the function vSigmaTCh(i,weight,pdg,process)serves the same purpose.
This function returns 0 if i exceeds the number of annihilation channels and 1 otherwise,
i ≥ 1. The variable real*8 weight gives the relative contribution of each annihilation
channel and integer pdg(5) contains the codes of incoming and outgoing particles in the
annihilation process. character*40 process contains a textual description of annihilation

12

processes.

• vSigmaCC(T,cc,mode)

calculates the thermally averaged cross section × velocity for 2 → 2, 2 → 3, and 2 → 4
processes. T is the temperature in [GeV], cc is the address of the code for each process.
This address can be obtained by the function newProcess presented in Section 10. The
returned value is given in [pb].

If mode 6= 0, vSigmaCC calculates the contribution of a given process to the total
annihilation cross section, see Eq.1. The incoming particles should belong to the odd
sector. For 2 → 2 processes the result should be identical to the one obtained via vSigma

above. For this mode, verb—vSigmaCC— includes combinatoric factors: 2 if α̃ 6= β̃,
an additional factor 2 if the incoming state is not self-conjugated, and a factor 1

2
for

semi-annihilation.
If mode = 0, vSigmaCC is instead defined by the integral

< vσα̃β̃→X >T=
1

2Tm2
α̃m

2
β̃
K2(

mα̃

T
)K2(

m
β̃

T
)

∫

ds
√
sK1(

√
s

T
)p2cm(s)σ

α̃β̃→X(pcm(s))

where pcm is the center of mass momentum of incoming particles. Note that

lim
T→0

vSigmaCC(T, cc) = lim
pcm→0

σ(pcm)vrel(pcm)

where vrel(pcm) is the relative velocity of incoming particles. The result of vSigmaCC can
be different from that of vSigma described above when there is an important contribution
from NLSP’s to the total number density of DM particles.
• darkOmega(&Xf,fast,Beps)

calculates the dark matter relic density Ωh2. This routine solves the differential evolution
equation using the Runge-Kutta method. Xf = Mcdm/Tf characterizes the freeze-out
temperature which is defined by the condition Y (Tf) = 2.5Yeq(Tf). For asymmetric
DM this condition reads 2

√

Y +(Tf)Y −(Tf) = 2.5Yeq(Tf). The value of Xf is given for
information and is also used as an input for the routine that gives the relative contribution
of each channel to Ωh2, see printChannels below. The fast = 1 flag forces the fast
calculation (for more details see Ref. [?]). This is the recommended option and gives
an accuracy around 1%. The parameter Beps defines the criteria for including a given
coannihilation channel in the computation of the thermally averaged cross-section, [?].
The recommended value is Beps = 10−4 − 10−6 whereas if Beps = 1 only annihilation of
the lightest odd particle is computed.

darkOmega solves the differential equation for the abundance Y (T) in the temperature
interval [Tend,Tstart] defined by the conditions Y (Tstart) ≈ 1.1Yeq(Tstart), Y (Tend) ≈
10Yeq(Tend). For temperatures below Tend, the contribution for Yeq is neglected and the
differential equation is integrated explicitely. The solution in the interval [Tend,Tstart]
interval is tabulated and can be displayed via the function YF(T). The equilibrium abun-
dance can be accessed with the function Yeq(T).
• darkOmegaFO(&Xf, fast, Beps)

calculates the dark matter relic density Ωh2 using the freeze-out approximation.
• printChannels(Xf,cut,Beps,prcnt,FD)

writes into FD the contributions of different channels to (Ωh2)−1. Here Xf is an input

13

parameter which should be evaluated first in darkOmega[FO]. Only the channels whose
relative contribution is larger than cut will be displayed. Beps plays the same role as the
darkOmega[FO] routine. If prcnt 6= 0 the contributions are given in percent. Note that
for this specific purpose we use the freeze-out approximation.
• oneChannel(Xf,Beps,p1,p2,p3,p4)

calculates the relative contribution of the channel p1, p2 → p3, p4 to (Ωh2)−1. p1,...,p4
are particle names. To sum over several channels one can write "*" instead of a particle
name, e.g "*" in place of p1.
• omegaCh is an array that contains the relative contribution and particle names for each
annihilation channel. In the Fortran version one uses instead the function
omegaCh(i,weight,pdg,process). These array and function are similar to vSigmaTCh

described above. The array omegaCh if filled after calling either darkOmegaFO or printChannels.
There is an option to calculate the relic density in models with DM -DM asymmetry.

In this case we assume that the number difference DM -DM is conserved in all reactions.
Thus a small difference in initial abundances can lead to a large DM asymmetry after
freeze-out as is the case for the baryon asymmetry.

•deltaY
describes the difference between the DM and anti-DM abundances for the models where
the number of DM particles minus the number of anti-DM is conserved in decays and
collisions. In such models deltaY is a constant during the thermal evolution of the
Universe, see Ref. [?].
•dmAsymm
is defined by the equation

Ω± = Ω
1± dmAsymm

2

and evaluated by micrOMEGAs while calculating the relic density with an initial asymmetry
deltaY, see [?]. This parameter can also be reset after the relic density computation and
will then be taken into account for direct and indirect detection rates.
•darkOmegaExt(&Xf, vs_a, vs_sa)

calculates the dark matter relic density Ωh2 for annihilation cross sections provided by
an external function. Here vs_a is the annihilation cross section in [pb] as a function of
the temperature in [GeV] units while vs_sa is the semi-annihilation cross section. vs_a

is required for all models, while vs_sa is relevant only for models where semi-annihilation
occurs. The user can substitute NULL for vs_sa when semi-annihilation is not possible.

darkOmegaExt can also be used if 2 → 2 processes do not contribute to DM annihila-
tion. In this case the appropriate annihilation or semi-annihilation cross sections can be
calculated by vSigmaCC and the tabulated results stored in vs_a and vs_sa. Note that
if the user substitute some function which is not in tabular form, darkOmegaExt can be
slow as it has not been optimized.

darkOmegaExt solves the Runge-Kutta equation in the interval [Tstart, Tend] where
Tstart is defined automatically while Tend has a fixed value 10−3 GeV. darkOmegaExt is
sensitive to effect of DM asymmetry.

14

6.3 Calculation of relic density for two-component Dark Matter

models.

•darkOmega2(fast, Beps)

Calculates Ωh2 for either one- or two-components DM models. In the former case it
should give the same result as darkOmega. The parameters fast and Beps have the same
meaning as for the darkOmega routine. The returned value corresponds to the sum of the
contribution of the two DM components to Ωh2. darkOmega2 also calculates the global
parameter fracCDM2 which represents the mass fraction of CDM2 in the total relic density

Ω = Ω1 + Ω2 (3)

fracCDM2 =
Ω2

Ω
(4)

This parameter is then used in routines which calculate the total signal from both DM
candidates in direct and indirect detection experiments, nucleusRecoil, calcSpectrum,
and neutrinoFlux. The user can change the global fracCDM2 parameter before the
calculation of these observables to take into account the fact that the value of the DM
fraction in the Milky Way could be different than in the early Universe.

The routines that were described in section 6.2 are not available for two-component
DM models. In particular the individual channel contribution to the relic density cannot
be computed and DM asymmetry is ignored. After calling darkOmega2 the user can check
the cross sections for each class of reactions (but not for individual processes) which were
tabulated during the calculation of the relic density. The functions
•vsabcd F(T)

computes the sum of the cross sections for each class of reactions (a, b, c, d = 0, 1, 2)
tabulated during the calculation of the relic density. Here T is the temperature in [GeV]
and the return value is vσ in [pb]. These functions are defined in the interval [Tstart
, Tend] where Tstart is a global parameter defined by darkOmega2, Tend=10−3GeV.
Specifically the functions available are

vs1100F vs1110F vs1120F vs1112F vs1122F vs1210F vs1211F
vs1220F vs1222F vs2200F vs2210F vs2220F vs2211F vs2221F

The temperature dependence of the abundances can also be called by the user, the
functions are named Y1F(T) and Y2F(T) and are defined only in the interval T ∈ [Tend,Tstart].
The equilibrium abundances are accessible via the Yeq1(T), Yeq2(T) functions and the
deviation from equilibrium by the functions dY1F(T)= Y1F(T)-Y1eq(T) and
dY2F(T)=Y2F(T)-Y2eq(T).

7 Direct detection.

7.1 Amplitudes for elastic scattering

• nucleonAmplitudes(CDM,pAsi,pAsd,nAsi,nAsd)

calculates the amplitudes for CDM-nucleon elastic scattering at zero momentum. pAsi(nAsi)
are spin independent amplitudes for protons(neutrons) whereas pAsd(nAsd) are the cor-
responding spin dependent amplitudes. Each of these four parameters is an array of

15

dimension 2. The zeroth (first) element of these arrays gives the χ-nucleon amplitudes
whereas the second element gives χ-nucleon amplitudes. Amplitudes are normalized such
that the total cross section for either χ or χ cross sections is2

σtot =
4M2

χM
2
N

π(Mχ +MN)2
(|ASI |2 + 3|ASD|2) (5)

nucleonAmplitudes depends implicitly on form factors which describe the quark con-
tents in the nucleon. These form factors are global parameters (see Table 1 for default
values)

TypeFFPq TypeFFNq

where Type is either ”Scalar”, ”pVector”, or ”Sigma”, FFP and FFN denote proton and
neutron and q specifies the quark, d, u or s. Heavy quark coefficients are calculated
automatically.
• calcScalarQuarkFF(mu/md,ms/md,σπN ,σs)
computes the scalar coefficients for the quark content in the nucleon from the quark mass
ratios mu/md,ms/md as well as from σπN and σs. The default values given in Table 2
are obtained for σs = 42MeV, σπN = 34MeV, mu/md = 0.56,ms/md = 20.2 [?]. The
function calcScalarQuarkFF(0.553,18.9,55.,243.5) will reproduce the default values of the
scalar quark form factors used in micrOMEGAs2.4 and earlier versions.

7.2 Scattering on nuclei

• nucleusRecoil(f,A,Z,J,Sxx,dNdE)

This is the main routine of the direct detection module. The input parameters are:

⋄ f - the DM velocity distribution normalized such that
∫ ∞

0

vf(v)dv = 1

The units are km/s for v and s2/km2 for f(v).

⋄ A - atomic number of nucleus;

⋄ Z - number of protons in the nucleus, predefined values for a wide set of isotopes
are called with Z {Name};

⋄ J - nucleus spin, predefined values for a wide set of isotopes are called with
J {Name}{atomic number}.

⋄ Sxx - is a routine which calculates nucleus form factors for spin-dependent interac-
tions (S00,S01,S11), it depends on the momentum transfer in fm−1. The available
form factors are

SxxF19 SxxNa23 SxxNa23A SxxAl27 SxxSi29 SxxSi29A

SxxK39 SxxGe73 SxxGe73A SxxNb92 SxxTe125 SxxTe125A

SxxI127 SxxI127A SxxXe129 SxxXe129A

SxxXe131 SxxXe131A SxxXe131B

2All parameters are in GeV.

16

The last character is used to distinguish different implementations of the form factor
for the same isotope, see details in [?].

The form factors for the spin independent (SI) cross section are defined by a Fermi dis-
tribution and depend on the global parameters Fermi_a, Fermi_b, Fermi_c.

The returned value gives the number of events per day and per kilogram of detector
material. The result depends implicitly on the global parameter rhoDM, the density of DM
near the Earth. The distribution over recoil energy is stored in the array dNdE which by
default has Nstep = 200 elements. The value in the ith element corresponds to

dNdE[i] =
dN

dE
|E=i∗keV ∗step

in units of (1/keV/kg/day). By default step is set to 1.
For a complex WIMP, nucleusRecoil averages over χ and χ. For example for 73Ge,

a call to this routine will be:

nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,FeScLoop,dNdE);

• setRecoilEnergyGrid(step,Nstep)

changes the values of step and Nstep for the computation of dNdE.
• Maxwell(v)

returns

f(v) =
cnorm
v

∫

|~v|<vmax

d3~v exp

(

−(~v − VEarth)
2

∆v2

)

δ(v− |~v|)

which corresponds to the isothermal model. Default values for the global parameters
∆v = Vrot, vmax = Vesc, Vearth are listed in Table 1. cnorm is the normalization factor.
This function is an argument of the nucleusRecoil function described above.
• nucleusRecoil0(f,A,Z,J,Sp,Sn,dNdE)

is similar to the function nucleusRecoil except that the spin dependent nuclei form
factors are described by Gauss functions whose values at zero momentum transfer are
defined by the coefficients Sp,Sn [?]. Predefined values for the coefficients Sp,Sn are
included for the nuclei listed in nucleusrecoil as well as 3He, 133Cs. Their names are

Sp {Nucleus Name}{Atomic Number}
Sn {Nucleus Name}{Atomic Number}

One can use this routine for nuclei whose form factors are not known.

7.3 Auxiliary routines

Two auxiliary routines are provided to work with the energy spectrum computed with
nucleusRecoil and nucleusRecoil0.
• cutRecoilResult(dNdE,E1,E2)

calculates the number of events in an energy interval defined by the values E1,E2 in keV.
• displayRecoilPlot(dNdE,title,E1,E2)

plots the generated energy distribution dNdE. Here title is a character string specifying
the title of the plot and E1,E2 are minimal and maximal values for the displayed energy
in keV.

17

8 Indirect detection

8.1 Interpolation and display of spectra

Various spectra and fluxes of particles relevant for indirect detection are stored in arrays
with NZ=250 elements. To decode and interpolate the spectrum array one can use the
following functions:
• SpectdNdE(E,spectTab)

interpolates the tabulated spectra and returns the particle distribution dN/dE where E is
the energy in GeV. For a particle number distribution the returned value is given in GeV−1

units while a particle flux is expressed in (sec cm2 sr GeV)−1.
To display the spectra as a function of energy one can use
• displaySpectrum(message,Emin,Emax,spectTab)

where message is a text string which gives a title to the plot and Emin and Emax define
energy cuts.
• displaySpectra(title, Emin, Emax, N, nu1,lab1,...)

displays several spectra. Here title contains some text, Emin,Emax are the lower and
upper limits, and N is the number of spectra to display. Each spectrum is defined with
two arguments, nu1 designates the spectrum array and lab1 contains some text to label
the spectrum.

Even though the user does not need to know the structure of the spectrum array,
we describe it below. The first (zeroth) element of the array contains the maximum
energy Emax. As a rule Emax is the mass of the DM particle. The ith element (1 ≤
i < NZ − 1) of the spectrum array contains the value of Ei

dN
dEi

where Ei = Emaxe
Zi(i),

Zi(i)=−7 ln 10
(

i−1
NZ

)1.5
.

That is the array covers the energy interval Emax ≥ E > 10−7Emax.
• addSpectrum(Spect,toAdd)

sums the spectra toAdd and Spect and writes the result in Spect. For example, this
routine can be useful for summing spectra with different maximal energy.
• spectrMult(Spec, func)

allows to multiply the spectrum Spec by any energy dependent function func

• spectrInt(Emin,Emax,Spec)

integrates a spectrum/flux, Spec from Emin to Emax.
• spectrInfo(Emin,Spec,&Etot)

provides information on the spectra. The returned value and Etot corresponds respec-
tively to

Ntot =

Emax
∫

Emin

SpectdNdE(E, Spec)dE = spectrInt(Emin, Emax, Spec)

Etot =

Emax
∫

Emin

E SpectdNdE(E, Spec)dE

where the first element of the table Spec contains the value of Emax.

18

8.2 Annihilation spectra

• calcSpectrum(key,Sg,Se,Sp,Sne,Snm,Snl,&err)

calculates the spectra of DM annihilation at rest and returns σv in cm3/s . The calcu-
lated spectra for γ, e+, p̄, νe, νµ, ντ are stored in arrays of dimension NZ as described
above: Sg, Se, Sp, Sne, Snm, Snl. To remove the calculation of a given spectra, substi-
tute NULL for the corresponding argument. key is a switch to include the polarisation
of the W,Z bosons (key=1) or photon radiation (key=2). Note that final state photon
radiation (FSR) is always included. When key=2 the 3-body process χχ′ → XX + γ
is computed for those subprocesses which either contain a light particle in the t-channel
(of mass less than 1.2 Mcdm) or an outgoing W when Mcdm>500GeV. The FSR is then
subtracted to avoid double counting. Only the electron/positron spectrum is modified
with this switch. When key=4 the contibutions for each channel to the total annihilation
rate are written on the screen. More than one option can be switched on simultaneously
by adding the corresponding values for key. For example both the W polarization and
photon radiation effects are included if key=3. A problem in the spectrum calculation
will produce a non zero error code, err 6= 0. calcSpectrum interpolates and sums spectra
obtained by Pythia. The spectra tables are provided only for Mcdm> 2GeV. The results
for a dark matter mass below 2 GeV will therefore be wrong, for example an antiproton
spectrum with kinematically forbidden energies will be produced. A warning is issued for
Mcdm< 2GeV.
• vSigmaCh

is an array that contains the relative contribution and particle names for each annihila-
tion channel. It is similar to vSigmaTCh described in Section 6.2. Note that the list of
particles contains five elements to allow to include gamma radiation. For 2->2 processes
vSigmaCh[n].prtcl[4]=NULL. The array vSigmaCh is filled by calcSpectrum. In the For-
tran version one uses instead the function
vSigmaCh(i,weight,pdg,process)

which is similar to the Fortran vSigmaTCh described in Section 6.2.

8.3 Distribution of Dark Matter in Galaxy.

The indirect DM detection signals depend on the DM density in our Galaxy. The DM
density is given as the product of the local density at the Sun with the halo profile function

ρ(r) = ρ⊙Fhalo(r) (6)

In micrOMEGAs ρ⊙ is a global parameter rhoDM and the Zhao profile [?]

Fhalo(r) =

(

R⊙

r

)γ (rαc +Rα
⊙

rαc + rα

)
β−γ
α

(7)

with α = 1, β = 3, γ = 1, rc = 20[kpc] is used by default. R⊙, the distance from the
Sun to the galactic center, is also a global parameter, Rsun. The parameters of the Zhao
profile can be reset by
• setProfileZhao(α,β,γ,rc)
The function to set another density profile is
• setHaloProfile(Fhalo(r))
where Fhalo(r) is any function which depends on the distance from the galactic center,

19

r, defined in [kpc] units. For instance, setHaloProfile(hProfileEinasto) sets Einasto
profile

Fhalo(r) = exp

[

− 2

α

((

r

R⊙

)α

− 1

)]

where by default α = 0.17, but can be changed by
• setProfileEinasto(α)
The command setHaloProfile(hProfileZhao) sets back the Zhao profile. Note that
both setProfileZhao and setProfileEinasto call setHaloProfile to define the cor-
responding profile.

Dark matter annihilation in the Galaxy depends on the average of the square of the
DM density, < ρ2 >. This quantity can be significantly larger than < ρ >2 when clumps
of DM are present [?]. In micrOMEGAs , we use a simple model where fcl is a constant
that characterizes the fraction of the total density due to clumps and where all clumps
occupy the same volume Vcl and have a constant density ρcl. Assuming clumps do not
overlap, we get

< ρ2 >= ρ2 + fclρclρ. (8)

This simple description allows to demonstrate the main effect of clumps: far from the
Galactic center the rate of DM annihilation falls as ρ(r) rather than as ρ(r)2. The pa-
rameters ρcl and fcl have zero default values. The routine to change these values is
• setClumpConst(fcl,ρcl)
To be more general, one could assume that ρcl and fcl depend on the distance from the
galactic center. The effect of clumping is then described by the equation

< ρ2 > (r) = ρ(r)(ρ(r) + ρeffclump(r)), (9)

and the function
• setRhoClumps(ρeffclump)

allows to implement a more sophisticated clump structure. To return to the default
treatment of clumps call setRhoClumps(rhoClumpsConst) or setClumpConst.

8.4 Photon signal

The photon flux does not depend on the diffusion model parameters but on the angle
φ between the line of sight and the center of the galaxy as well as on the annihilation
spectrum into photons
• gammaFluxTab(fi,dfi,sigmav,Sg,Sobs)

multiplies the annihilation photon spectrum with the integral over the line of sight and
over the opening angle to give the photon flux. fi is the angle between the line of sight
and the center of the galaxy, dfi is half the cone angle which characterizes the detector
resolution (the solid angle is 2π(1−cos(dfi)) , sigmav is the annihilation cross section, Sg
is the DM annihilation spectra. Sobs is the spectra observed in 1/(GeV cm^2 s) units.

The function gammaFluxTab can be used for the neutrino spectra as well.
• gammaFluxTabGC(l,b,dl,db,sigmav,Sg,Sobs)

is similar to gammaFluxTab but uses standard galactic coordinates. Here l is the galactic
longitude (measured along the galactic equator from the galactic center, and b is the lati-
tude (the angle above the galactic plane). Both l and b are given in radians. The relation

20

between the angle fi used above and the galactic coordinates is fi= cos−1(cos(l) cos(b)).
gammaFluxTabGC integrates the flux over a rectangle [(l, b)− (l + dl, b+ db)].
• gammaFlux(fi,dfi,dSigmavdE)

computes the photon flux for a given energy E and a differential cross section for photon
production, dSigmavdE. For example, one can substitute dSigmavdE=σvSpectdNdE(E,SpA)
where σv and SpA are obtained by calcSpectrum. This function can also be used to com-
pute the flux from a monochromatic gamma-ray line by substituting the cross section at
fixed energy (in cm3/s) instead of dSigmavdE, for example the cross sections obtained
with the loopGamma function in the MSSM, NMSSM, CPVMSSM models (vcsAA and
vcsAZ). In this case the flux of photons can be calculated with
gammaFlux(fi,dfi,2*vcsAA+vcsAZ).
• gammaFluxGC(l,b,dl,db,vcs)

is the analog of gammaFlux when using standard galactic coordinates.

8.5 Propagation of charged particles.

The observed spectrum of charged particles strongly depends on their propagation in the
Galactic Halo. The propagation depends on the global parameters

K_dif, Delta_dif, L_dif, Rsun, Rdisk

as well as

Tau_dif (positrons), Vc_dif (antiprotons)

• posiFluxTab(Emin,sigmav, Se, Sobs)

computes the positron flux at the Earth. Here sigmav and Se are values obtained by
calcSpectrum. Sobs is the positron spectrum after propagation. Emin is the energy cut
to be defined by the user. Note that a low value for Emin increases the computation time.
The format is the same as for the initial spectrum. The function SpectrdNdE(E,Sobs)

described above can also be used for the interpolation, in this case the flux is returned in
(GeV s cm2sr)−1.
• pbarFlux(E,dSigmavdE)

computes the antiproton flux for a given energy E and a differential cross section for
antiproton production, dSigmavdE. For example, one can substitute
dSigmavdE=σvSpectdNdE(E,SpP)
where σv and SpP are obtained by calcSpectrum. This function does not depend on
the details of the particle physics model and allows to analyse the dependence on the
parameters of the propagation model.
• pbarFluxTab(Emin,sigmav, Sp, Sobs)

computes the antiproton flux, this function works like posiFluxTab,
• solarModulation(Phi, mass, stellarTab, earthTab)

takes into account modification of the interstellar positron/antiproton flux caused by the
electro-magnetic fields in the solar system. Here Phi is the effective Fisk potential in
MeV, mass is the particle mass, stellarTab describes the interstellar flux, earthTab is
the calculated particle flux in the Earth orbit.

Note that for solarModulation and for all *FluxTab routines one can use the same
array for the spectrum before and after propagation.

21

9 Neutrino signal from the Sun and the Earth

This module does not work yet in case of 2DM

After being captured, DM particles concentrate in the center of the Sun/Earth and
then annihilate into Standard Model particles. These SM particles further decay produc-
ing neutrinos that can be observed at the Earth. The neutrino spectra originating from
different annihilation channels into SM particles and taking into account oscillations and
Sun medium effects were recently computed both in WimpSim [?] and in PPPC4DMν [?].
We use the set of tables provided by these two groups as well as those from DMν [?]
which were included in previous versions of micrOMEGAs. The new global parameter
WIMPSIM allows to choose the neutrino spectra. The default value WIMPSIM=0 3 corre-
sponds to the PPPC4DMν spectra while WIMPSIM=1 corresponds to the WimpSim spectra
and WIMPSIM=-1 to the DMν spectra.
• neutrinoFlux(f,forSun,nu, nu_bar)

calculates the muon neutrino/anti-neutrino fluxes near the surface of the Earth. Here
f is the DM velocity distribution normalized such that

∫∞

0
vf(v)dv = 1. The units are

km/s for v and s2/km2 for f(v). For example, one can use the same Maxwell function
introduced for direct detection. This routine implicitly depends on the WIMPSIM switch.

If forSun==0 then the flux of neutrinos from the Earth is calculated, otherwise this
function computes the flux of neutrinos from the Sun. The calculated fluxes are stored
in nu and nu bar arrays of dimension NZ=250. The neutrino fluxes are expressed in
[1/Year/km2].
• muonUpward(nu,Nu,muon)

calculates the muon flux which results from interactions of neutrinos with rocks below the
detector. Here nu and Nu are input arrays containing the neutrino/anti-neutrino fluxes
calculated by neutrinoFlux. muon is an array which stores the resulting sum of µ+, µ−

fluxes. SpectdNdE(E,muon) gives the differential muon flux in [1/Year/km2/GeV] units.
The muon flux weakly depends on the propagation medium, e.g. rock or ice. The energy
lost during propagation is described by the equation [?]

dE

dx
= −(α + βE)ρ (10)

For propagation in ice (the switch forRocks=0), micrOMEGAs substitutes ρ = 1.0g/cm3,
α = 0.00262GeV cm2/g, β = 3.5 × 10−6cm2/g [?], while for propagation in rocks, ρ =
2.6g/cm3, α = 0.002GeV cm2/g, β = 3.0×10−6cm2/g [?]. The result depends on the ratio
α/β .
• muonContained(nu,Nu,rho, muon) calculates the flux of muons produced in a given
detector volume.This function has the same parameters as muonUpward except that the
outgoing array gives the differential muon flux resulting from neutrinos converted to muons
in a km3 volume given in [1/Year/km3/GeV] units. rho is the density of the detector in
g/cm3.

• atmNuFlux(nu,cs,E)

returns the atmospheric muon neutrinos (nu > 0) and anti-neutrinos spectrum (nu < 0)

3Since PPPC4DMν does not provide neutrino specrtra produced at the center of the Earth, in this

case and for WIMPSIM=0 micrOMEGAs uses the DMν spectra.

22

in [1/Year/km^2] units for a given cosine of the zenith angle, cs. This function is based
on [?].

Two functions allow to estimate the background from atmospheric neutrinos creating
muons after interaction with rocks below the detector or with water inside the detector.
• ATMmuonUpward(cosFi,E) calculates the sum of muon and anti-muon fluxes resulting
from the interaction of atmospheric neutrinos with rocks in units of [1/Year/km2/GeV/Sr].
cosFi is the energy between the direction of observation and the direction to the center
of Earth. E is the muon energy in GeV. The result depends on the forRock switch.
• ATMmuonContained(cosFi, E, rho) calculates the muon flux caused by atmospheric
neutrinos produced in a given (detector) volume. The returned value for the flux is given
in 1/Year/km3/GeV/Sr. rho is the density of the detector in g/cm3 units. cosFi and E

are the same as above.

9.1 Comparison with IceCube results

These functions are described in [?] and allow to compare the predictions for the neutrino
flux from DM captured in the Sun with results of IceCube22.
• IC22nuAr(E)

effective area in [km2] as a function of the neutrino energy, Aνµ(E)
• IC22nuBarAr(E)

effective area in [km2] as a function of the anti-neutrino energy, Aν̄µ(E)).
• IC22BGdCos(cs)

angular distribution of the number of background events as a function of cosφ,
dNbg

d cosϕ
.

• IC22sigma(E)

neutrino angular resolution in radians as a function of energy.
• exLevIC22(nu_flux, nuB_flux,&B)

calculates the exclusion confidence level for number of signal events generated by given νµ
and ν̄µ fluxes, [?]. The fluxes are assumed to be in [GeV km2 Year]−1. This function uses
the IC22BGdCos(cs) and IC22sigma(E) angular distribution for background and signal
as well as the event files distributed by IceCube22 with φ < φcut = 8◦. The returned
parameter B is a Basyan factor which presents the ratio of likelihood functions for model
with given fluxes and model with null signal. See details in [?].
• fluxFactorIC22(exLev, nu,nuBar)

For given neutrino, nu, and anti-neutrino fluxes, nuBar, this function returns the factor
that should be applied to the fluxes (neutralino-proton cross sections) to obtain a given
exclusion level exLev in exLevIC22. This is used to obtain limits on the SD cross section
for given annihilation channel.

10 Cross sections and decays.

The calculation of particle widths, decay channels and branching fractions can be done
by the functions

• pWidth(particleName,&address)

returns directly the particle width. If the 1->2 decay channels are kinematically accessible
then only these channels are included in the width when VWdecay,VZdecay= 0. If not,

23

pWidth compiles all open 1->3 channels and use these for computing the width. If all
1->3 channels are kinematically forbidden, micrOMEGAs compiles 1->4 channels. If
VWdecay(VZdecay) 6= 0, then micrOMEGAs also computes the processes with virtual
W (Z) which are closed kinematically and adds these to the 1->2 decay channels. Note
that 1->3 decay channels with a virtual W will be computed even if the mass of the
decaying particle exceeds the threshold for 1->2 decays by several GeV’s. This is done
to ensure a proper matching of 1->2 and 1->3 processes. For particles other than gauge
bosons, an improved routine with 3-body processes and a matching between the 1->2

and 1->3 calculations is kept for the future. The returned parameter address gives an
address where information about the decay channels is stored. In C, the address should
be of type txtList. For models which read a SLHA parameter file, the values of the
widths and branchings are taken from the SLHA file unless the user chooses not to read
this data, see (Section 14.5) for details.
• printTxtList(address,FD)

lists the decays and their branching fractions and writes them in a file. address is the
address returned by pWidth.
• findBr(address,pattern)

finds the branching fraction for a specific decay channel specified in pattern, a string
containing the particle names in the CalcHEP notation. The names are separated by
commas or spaces and can be specified in any order.
• slhaDecayPrint(pname,delVirt,FD)

uses pWidth described above to calculate the width and branching ratios of particle pname
and writes down the result in SLHA format. The return value is the PDG particles code.
In case of problem, for instance wrong particle names, this function returns zero. This
function first tries to calculate 1 → 2 decays. If such decays are kinematically forbidden
then 1 → 3 decay channels are computed. If decay list contains virtual W/Z bosons and
delV irt 6= 0, then vector bosons will be presenter via their decay probucts.
• newProcess(procName)

compiles the codes for any 2 → 2 or 1 → 2 reaction. The result of the compilation
is stored in the shared library in the directory work/so-generated/. The name of the
library is generated automatically.

The newProcess routine returns the address of the compiled code for further usage.
If the process can not be compiled, then a NULL address is returned. 4

Note that it is also possible to compute processes with polarized massless beams, for
example for a polarized electron beam use e% to designate the initial particle.
• procInfo1(address,&ntot,&nin,&nout)

provides information about the total number of subprocesses (ntot) stored in the library
specified by address as well as the number of incoming (nin) and outgoing (nout) parti-
cles for these subprocesses. Typically, for collisions (decays), nin = 2(1) and nout = 2, 3.
NULL can be substitute if this information is not needed.
• procInfo2(address,nsub,N,M)

fills an array of particle names N and an array of particle masses M for the subprocess nsub
(1 ≤ nsub ≤ ntot) . These arrays have size nin+ nout and the elements are listed in the
same order as in CalcHEP starting with the initial state, see the example in MSSM/main.c.

4The Fortran version of newProcess returns integer*8.

24

• widh1CC(address, &err)

calculate width of external process which address should be obtained by newProcess

command. widh1CC is able to calculate widths for 1 → 2, 1 → 3 and 1 → 3 processes.
Internal resonances in tested decay processe are not expected. In case of on sell subdecays
retun value can be incorrect. If address code contains several subproceses, then only the
first one is evaluated. err 6= 0 is a signal of error.
• cs22(address,nsub,P,c1,c2,&err)

calculates the cross-section for a given 2 → 2 process, nsub, with center of mass momen-
tum P (GeV). All model parameters except the strong coupling GG can be specified with
the functions findVal[W]/assignVal[W] described in Section 5. The strong coupling GG

is defined via the scale parameter GGscale. The differential cross-section is integrated
within the range c1 < cos θ < c2. θ is the angle between ~p1 and ~p3 in the center-of-mass
frame. Here ~p1 (~p3) denote respectively the momentum of the first initial(final) particle.
err contains a non zero error code if nsub exceeds the maximum value for the number of
subprocesses (given by the argument ntot in the routine procInfo1). To set the polariza-
tion of the initial massless beam, define Helicity[i] where i = 0, 1 for the 1th and 2nd

particles respectively. The helicity is defined as the projection of the particle spin on the
direction of motion. It ranges from [-1,1] for spin 1 particles and from [-0.5,0.5] for spin
1/2 particles. By definition a left handed particle has a positive helicity.
• hCollider(Pcm,pp,nf, Qren,Qfac, pName1,pName2,Tmin,wrt) calculates the cross
section for particle production at hadron colliders. Here Pcm is the beam energy in the
center-of-mass frame. pp is 1(−1) for pp(pp̄) collisions, nf ≤ 5 defines the number of quark
flavors taken into account. The parameters Qren and Qfac define the renormalisation and
factorization scales respectively. pName1 and pName2 are the names of outgoing particles.
If Tmin ≤ 0 then hCollider calculates the total cross section for the 2-body final state
process. Otherwise it calculates the cross section for

proton, [a]proton -> pName1, pName2, jet

where Tmin > 0 defines the cut on the jet transversee momentum. The jet contents is
defined by the parameter nf . If Qfact ≤ 0, then running ŝ is used for the factorization
scale. If Qren ≤ 0, ŝ is used for the renormalization scale for a 2 → 2 process and pT of
the jet is used for the renormalization scale for a process with a jet in the final state. The
last argument in the hCollider routine allows to switch on/off (wrt=1/0) the printing of
the contribution of individual channels to the total cross section. The value returned is
the total cross section in [pb].

One of the arguments pName1,pName2 can be NULL. Then the cross section for
2 → 1 or 2 → 1 + jet process will be calculated. In Fortran, one should pass a blank
string instead of NULL.

By default hCollider uses the cteq6l structure function built-in the micrOMEGAs
code. One can set any other parton distribution included in either micrOMEGAs or
LHAPDF. The list of structure functions in micrOMEGAs can be obtained with the com-
mand
• PDFList

and one of these can be activated by
• setPDF(name)

To work with other PDF’s available in LHAPDF one should first define the environment vari-
able LHAPDFPATH which specifies the path to the LHAPDF library. Then micrOMEGAs

25

Makefile links it automatically. The list of available LHAPDF distributions can be ob-
tained with the command
• LHAPDFList

and one of these can be activated by
• setLHAPDF(nset,name)

where nset specifies the subset number. Note, that if a wrong input is provided, setLHAPDF
terminates the execution.

11 Tools for model independent analysis

A model independent calculation of the DM observables is also available. After specifying
the DM mass, the cross sections for DM spin dependent and spin independent scatter-
ing on proton and neutron, the DM annihilation cross section times velocity at rest and
the relative contribution of each annihilation channel to the total DM annihilation cross
section, one can compute the direct detection rate on various nuclei, the fluxes for pho-
tons, neutrinos and antimatter resulting from DM annihilation in the galaxy and the
neutrino/muon fluxes in neutrino telescopes.

All the routines presented here depend implicitly on global parameter Mcdm except
for basicSpectra and basicNuSpectra . These routines do not take into account the
multi-component structure of DM and, in particular, possible differences between DM
and anti-DM. To use these for multi-component DM the user has to perform a summation
over the different DM components.
• nucleusRecoilAux(f,A,Z,J,Sxx,csIp,csIn,csDp,csDn,dNdE)

This function is similar to nucleusRecoil. The additional input parameters include
csIp(csIn) the SI cross sections for WIMP scattering on protons(neutrons) and csDp(csDn)
the SD cross sections on protons(neutrons). A negative value for one of these cross sections
is interpreted as a destructive interference between the proton and neutron amplitudes.
Note that the rate of recoil depends implicitly on the WIMP mass, the global parameter
Mcdm. The numerical value for the global parameter has to be set before calling this func-
tion.
• nucleusRecoil0Aux(f,A,Z,J,Sp,Sn,csIp,csIn,csDp,csDn,dNdE) is the correspond-
ing modification of nucleusRecoil0.

For indirect detection, we also provide a tool for model independent studies
• basicSpectra(Mass,pdgN,outN,Spectr)

computes the spectra of outgoing particles and writes the result in an array of dimension
250, Spectr, pdgN is the PDG code of the particles produced in the annihilation of a pair
of WIMPs. To get the spectra generated by transverse and longitudinal W’s substitute
pdgN = 24 +′ T ′ and 24 +′ L′ correspondingly. In the same manner pdgN = 23 +′ T ′

and 23 +′ L′ provides the spectra produced by a polarized Z boson. outN specifies the
outgoing particle,

outN = {0, 1, 2, 3, 4, 5} for {γ, e+, p−, νe, νµ, ντ}

The Mass parameter defines the mass of the DM particle. Note that the propagation
routines for e+, p−, γ can be used after this routine as usual. Note that the result

26

of basicSpectra are not valid for Mcdm < 2GeV as explained in the description of
calcSpectrum.

To get indirect detection signals one can substitute the obtained spectra in the
[photon/posi/pbar]FluxTab routines. As long as one keeps the default setting CDM1=CDM2=NULL
these routines will use the Mcdm parameter to calculate the number density of DM particles.
• captureAux(f,forSun,Mass,csIp,csIn,csDp,csDn)

calculates the number of DM particles captured per second assuming the cross sections
for spin-independent and spin-dependent interactions with protons and neutrons csIp,

csIn, csDp, csDn are given as input parameters (in [pb]). A negative value for one of
the cross sections is interpreted as a destructive interference between the proton and neu-
tron amplitudes. The first two parameters have the same meaning as in the neutrinoFlux
routine Section 9. The result depends implicitly on the global parameters rhoDM and Mcdm

in Table 1.
• basicNuSpectra(forSun,Mass,pdg, pol, nu_tab, nuB_tab)

calculates the νµ and ν̄µ spectra corresponding to the pair annihilation of DM in the center
of the Sun/Earth into a particle-antiparticle pair with PDG code pdg. Mass is the DM
mass. Note that this routine depends implicitly on the global parameter WIMPSIM (1,0,01)
which selects the neutrino spectra computed by WimpSim [?], PPPC4DMν [?] and DMν [?].
The parameter pol selects the spectra for polarized particles available in PPPC4DMν .
pol=-1(1) corresponds to longitudinal (transverse) polarisation of vector bosons or to
left-handed (right-handed) polarisation of fermions, pol=0 is used for unpolarized spectra.
When polarized spectra are not available, the unpolarized ones are generated irrespective
of the value of pol. The parameter outN is 1 for muon neutrino and -1 for anti-neutrino.
The resulting spectrum is stored in the arrays nu_tab and nuB_tab with NZ=250 elements.

The files main.c/F in the directory mdlIndep contain an example of the calculation of
the direct detection, indirect detection and neutrino telescope signals using the routines
described in this section. The numerical input data in this sample file corresponds to
’MSSM/mssmh.dat’.

12 Constraints from colliders

12.1 The Higgs sector

To obtain the limits on the Higgs sector for models with one or several Higgs bosons,
the predictions for the signal strengths of the 125 GeV Higgs can be compared to the
latest results of the LHC, furthermore the exclusion limits obtained from Higgs searches
in different channels at LEP, Tevatron and the LHC can be applied to other Higgses in
the model. For the former an interface to the public code HiggsSignals [?] or Lilith [?]
is provided while exclusion limits obtained by the experimental collaborations can be
applied using HiggsBounds [?].

The interface to HiggsBounds and HiggsSignals is realized via SLHA files. More
specifically we generate the files HB.in and HS.in which contain the normalized couplings
squared of the Higgs to all SM particles, including the normalized couplings squared to
γγ, γZ, gg as well as all Higgs partial widths and the top decay width. The loop-induced
couplings are introduced into the different models using effective operators [?,?]. These
files are then fed to HiggsBounds and/or HiggsSignals and the output files HB.out and

27

HS.out are created. The information stored in these files can be extracted using the
SLHAplus commands presented in Section 14.5 in particular the slhaVal function, see for
example the main.c file in the MSSM directory.

The output of HiggsBounds consists of two numbers, HBresult and obsratio which
indicate whether a point has been excluded at the 95%C.L. by one of the experimental
results considered.

HBresult obsratio
0 > 1 parameter point is excluded
1 < 1 parameter point is not excluded
-1 < 0 invalid parameter point

Information on the most constraining channel is also given as output.
The output of HiggsSignals contains the number of channels analyzed and the cor-

responding χ2 value. We print these values on the screen as well as the corresponding
p-value - the probability that χ2 exceeds the obtained number. Detailed information
about each channel is stored in the HS.out file.

The options for running HiggsSignals are set by fixing the Dataset, Method and PDF

parameters. In the main.[c/F] files they are specified by define instructions. A theoretical
uncertainty on the mass of the Higgs bosons can be specified in the SLHA BLOCK
DMASS. The code which adds this block to HS.in for the 125 GeV Higgs is presented in
main.[c/F], by default we set the uncertainty at 2 GeV.

The input file to Lilith is created automatically and contains the reduced couplings
of the Higgs to all SM particles. The output is written in the Lilith_out.slha file and
contains the value of −2log(L) as well as the number of experimental data used for the
fit.

By default we delete the HB/HS.in/out, Lilith_out.slha files in the end of the
session. To keep them the user has to modify the CLEAN section in the end of main.[c/F].

12.2 Searches for New particles

12.2.1 SmodelS

LHC limits on new (odd) particles can be obtained using SModelS [?,?], a code which tests
Beyond the Standard Model (BSM) predictions against Simplified Model Spectra (SMS)
results from searches for R-parity conserving SUSY by ATLAS and CMS. SModelS v1.0.4
decomposes any BSM model featuring a Z2 symmetry into its SMS components using a
generic procedure where each SMS is defined by the vertex structure and the SM final state
particles; BSM particles are described only by their masses, production cross sections and
branching ratios. The underlying assumption is that differences in the event kinematics
(e.g. from different production mechanisms or from the spin of the BSM particle) do not
significantly affect the signal selection efficiencies. Within this assumption, SModelS can
be used for any BSM model with a Z2 symmetry as long as all heavier odd particles decay
promptly to the dark matter candidate. Note that due to the Z2 symmetry only pair
production is considered, and missing transverse energy (MET) is always implied in the
final state description.

SModelS needs three input files:

• an SLHA-type input file, containing the mass spectrum, decay tables5 and produc-

5Note that all decay products in the decay table need to be on-shell.

28

tion cross sections for the parameter point under investigation;

• particles.py defining the particle content of the model, specifically which particles
are even (“R-even”) and which ones are odd (“R-odd”) under the Z2 symmetry;

• a file for setting the run parameters, parameters.ini.

The first two are located in the same directory as main.c and are automatically writ-
ten by micrOMEGAs. A file containing the instructions to call SModelS can be found in
micromegas_4.3/include/SMODELS.inc (or SMODELS.inc_f).

An SLHA-type output is written to smodels.res, (or an alternative name selected by
the user). This output consists of three blocks,

• SModelS Settings lists the SModelS code and database versions as well as input
parameters for the decomposition.

• SModelS Exclusion contains as the first line the status information if a point is
excluded (1), not excluded (0), or not tested (−1). The latter can occur in scenarios
with long-lived charged particles or in scenarios where no matching SMS results are
found.

If a point is excluded (status 1), this is followed by a list of all results with R > 1,
sorted by their R values, R is defined as the ratio of the predicted theory cross
section and the corresponding experimental upper limit. For each of these results,
the SMS topology identifier (entry 0) (so-called Tx-name, see [?] for an explanation
of the terminology), the R value (entry 1), a measure of condition violation (entry
2), and the analysis identifier (entry 3) are listed.
If the point is not excluded (status 0), the result with the highest R value is given
instead to show whether a point is close to the exclusion limit or not.

• SModelS Missing Topos lists up to ten missing topologies sorted by their weights
(= σ × BR). Each entry consists of the line number, the

√
s in TeV, the weight

and a description of the topology in the SModelS bracket notation. Note that this
information is useful mainly for points that are not excluded.

In order to exploit decay channels involving a SM-like Higgs for which the experimental
collaborations assume SM branching ratios for the h with the mass fixed to mh = 125
GeV, micrOMEGAs checks whether neutral scalar particles with a mass in the range 123–
128 GeV have branching ratios to WW,ZZ, ττ, bb̄ within 15% of those of a SM Higgs of
the same mass. The corresponding particle will be identified as a SM Higgs by an entry
of type

25 : "higgs",

-25 : "higgs"

in the rEven dictionary in the file particles.py. Note that the name higgs is reserved
for a SM-like Higgs and should not be assigned generically. If no particle of that name is
identified in particles.py, and the corresponding SMS results requiring a Higgs in the
final state are not used by SModelS to constrain the parameter point.

29

12.2.2 Other limits

Limits from searches for a new massive Abelian gauge boson at the LHC, from LEP on
an invisible Z as well as limits on light neutralinos from LEP are provided through the
functions:
• Zinvisible()

returns 1 and prints a WARNING if the invisible width of the Z boson of the Standard
Model is larger than 0.5 MeV ([?]) and returns 0 if this constraint is fulfilled. This
routine can be used in any model with one DM where the Z boson is uniquely defined by
its PDG=23 and whether the neutral LSP is its own antiparticle or not.

• Zprimelimits()

returns 1 if the mass of the Z ′ boson is excluded or 0 otherwise. Currently the latest Z ′

search in the dilepton final state at
√
s = 13 TeV from ATLAS [?] is implemented. The

routine can be used for any Z ′ uniquely defined by the PDG code 32.

• LspNlsp_LEP()

checks the ocmpatibility with the upper limit [?] on the cross section for the production
of neutralinos σ(e+e− → χ̃0

1χ̃
0
i), i 6= 1, when the heavier neutralino decays into quark

pairs and the LSP, χ̃0
i → χ̃0

1qq̄. The function returns σ × BR =
∑

i σ(e
+e− → χ̃0

1χ̃
0
i) ×

BR(χ̃0
i → χ̃0

1qq̄) in pb as well as a flag greater than one if σ × BR > 0.1(0.5) pb if
mNLSP > (<)100 GeV [?]. This function can also be applied for non-SUSY models which
feature the same signature, in this case the function will compute the cross section for
production of the LSP and any other neutral particle from the odd sector which can decay
into the LSP and a Z boson.

13 Additional routines for specific models

The models included in micrOMEGAs contain some specific routines which we describe
here for the sake of completeness. The current distribution includes the following mod-
els: MSSM, NMSSM, CPVMSSM, UMSSM, IDM (inert doublet model), LHM(little Higgs model),
RHNM (a Right-handed Neutrino model), SM4 (toy model with 4th generation lepton), and
Z3M (doublet and singlet model with Z3 symmetry).

Some of these models contain a special routine for reading the input parameters:
• readVarMSSM, readVarNMSSM, readVarCPVMSSM, readVarlHiggs, readVarRHNM.
These routines are similar to the general readVar routine described in Section 5 but they
write a warning when a parameter is not found in the input file and display the default
values for these parameters.

The supersymmetric models contain several additional routines to calculate the spec-
trum and compute various constraints on the parameter space of the models. Some
functions are common to the MSSM,NMSSM,CPVMSSM,UMSSM models:
• o1Contents(FD)

prints the neutralino LSP components as the B̃, W̃ , h̃1, h̃2 fractions. For the NMSSM the
fifth component is the singlino fraction S̃ and for the UMSSM the sixth component is the
bino’ fraction B̃′. The sum of the squares of the LSP components should add up to 1.

30

13.1 MSSM

The MSSM has a long list of low scale independent model parameters, those are specified
in the SLHA file [?, ?]. They are directly implemented as parameters of the model.
For EWSB scenarios the input parameters are the soft parameters, the names of these
parameters are given in the MSSM/mssm[1/2].par files. The user can assign new values
to these parameters by means of assignVal or readVarMSSM.
• spectEwsbMSSM()
calculates the masses of Higgs and supersymmetric particles in the MSSM including one-
loop corrections starting from weak scale input parameters.
In these functions spect stands for one of the spectrum calculators suspect, isajet,
spheno, or softSusy. The default spectrum calculator package is SuSpect. To work with
another package one has to specify the appropriate path in MSSM/lib/Makefile. For this,
the environment variables ISAJET, SPHENO or SOFTSUSY must be redefined accordingly.
Note that we also provide a special interface for ISAJET to read a SLHA file. This means
that the user must first compile the executable isajet_slha which sets up the SLHA
interface in ISAJET. Specific instructions are provided in the README file.

For other MSSM scenarios, the parameters at the electroweak symmetry breaking scale
are derived from an input at high scale. The same codes suspect, isajet, spheno, or
softSusy are used for this.The corresponding routines are:
• spectSUGRA(tb,MG1,MG2,MG3,Al,At,Ab,signMu,MHu,MHd,Ml1,Ml3,Mr1,Mr3,Mq1,Mq3,

Mu1,Mu3,Md1,Md3)

assumes that all input parameters except tb and signMu are defined at the GUT scale.
The SUGRA/CMSSM scenario is a special case of this general routine.
• spectSUGRAnuh(tb,MG1,MG2,MG3,Al,At,Ab,Ml1,Ml3,Mr1,Mr3,Mq1,Mq3,

Mu1,Mu3,Md1,Md3,mu,MA)

realizes a SUGRA scenario with non universal Higgs parameters. Here the Mhu, MHd

parameters in the Higgs potential are replaced with the mu parameter defined at the
EWSB scale and MA, the pole mass of the CP-odd Higgs. The signMu parameter is
omitted because mu is defined explicitly.
•spectAMSB(am0,m32,tb,sng).
does the same as above within the AMSB model.

We have an option to directly read a SLHA input file, this uses the function
• lesHinput(file_name)

which returns a non-zero number in case of problem.
The routines for computing constraints are (see details in [?]).

• deltarho()

calculates the ∆ρ parameter in the MSSM. It contains for example the stop/sbottom
contributions, as well as the two-loop QCD corrections due to gluon exchange and the
correction due to gluino exchange in the heavy gluino limit.
• bsgnlo(&SMbsg)

returns the value of the branching ratio for b → sγ, see Appendix A. We have included
some new contributions beyond the leading order that are especially important for high
tan β. SMbsg gives the SM contribution.
• bsmumu()

31

returns the value of the branching ratio Bs → µ+µ− in the MSSM. It includes the loop
contributions due to chargino, sneutrino, stop and Higgs exchange. The ∆mb effect rele-
vant for high tan β is taken into account.
• btaunu()

computes the ratio between the MSSM and SM branching fractions for B̄+ → τ+ντ .
• gmuon()

returns the value of the supersymmetric contribution to the anomalous magnetic moment
of the muon.
• Rl23()

computes the ratio of the MSSM to SM value for Rl23 in K+ → µν due to a charged higgs
contribution, see Eq.70 in [?].
• dtaunu(&dmunu)

computes the branching ratio for D+
s → τ+ντ . dmunu gives the branching ratio for D+

s →
µ+νµ
• masslimits()

returns a positive value and prints a WARNING when the choice of parameters conflicts
with a direct accelerator limits on sparticle masses from LEP. The constraint on the light
Higgs mass from the LHC is included.

We have added a routine for an interface with superIso [?]. This code is not included
in micrOMEGAs so one has first to define the global environment variable superIso to
specify the path to the package.
• callSuperIsoSLHA()

launches superIso and downloads the SLHA file which contains the results. The return
value is zero when the program was executed successfully. Results for specific observ-
ables can be obtained by the command slhaValFormat described in section (14.5). Both
superIso and callSuperIsoSLHA use a file interface to exchange data. The delFiles

flag specifies whether to save or delete the intermediate files.
• loopGamma(&vcs_gz,&vcs_gg)

calculates σv for loop induced processes of neutralino annihilation into γZ and into γγ.
The result is given in cm3

s
. In case of a problem the function returns a non-zero value.

13.2 The NMSSM

As in the MSSM there are specific routines to compute the parameters of the model as
specified in SLHA. The spectrum calculator is NMSPEC [?] in the NMSSMTools_4.4.1 pack-
age [?].
• nmssmEWSB(void)

calculates the masses of Higgs and supersymmetric particles in the NMSSM starting from
the weak scale input parameters. These can be downloaded by the readVarNMSSM rou-
tine. [?]
• nmssmSUGRA(m0,mhf,a0,tb,sgn,Lambda,aLambda,aKappa)

calculates the parameters of the NMSSM starting from the input parameters of the
CNMSSM.

The routines for computing constraints are taken from NMSSMTools (see details
in [?]).
• bsgnlo(&M,&P), bsmumu(&M,&P), btaunu(&M,&P), gmuon(&M,&P)

are the same as in the MSSM case. Here the output parameters M and P give information

32

on the lower/upper experimental limits [?]
• deltaMd(),deltaMs()

compute the supersymmetric contribution to the B0
d,s −B0

d,s mass differences, ∆Md and
∆Ms.
• NMHwarn(FD)

is similar to masslimits except that it also checks the constraints on the Higgs masses,
returns the number of warnings and writes down warnings in the file FD.
• loopGamma(&vcs_gz,&vcs_gg)

calculates σv for loop induced processes of neutralino annihilation into γZ and into γγ.
The result is given in cm3

s
. In case of a problem the function returns a non-zero value.

13.3 The CPVMSSM

The independent parameters of the model include, in addition to some standard model
parameters, only the weak scale soft SUSY parameters. The independent parameters are
listed in CPVMSSM/work/models/vars1.mdl. Masses, mixing matrices and parameters
of the effective Higgs potential are read directly from CPsuperH [?, ?], together with
the masses and the mixing matrices of the neutralinos, charginos and third generation
sfermions. Masses of the first two generations of sfermions are evaluated (at tree-level)
within micrOMEGAs in terms of the independent parameters of the model.

The routines for computing constraints are taken from CPsuperH, [?]
• bsgnlo(), bsmumu(), btaunu(), gmuon()

are the same as in the MSSM case.

• deltaMd(),deltaMs()

are the same as in the NMSSM case.

• Bdll()

computes the supersymmetric contribution to the branching fractions for Bd → τ+τ− in
the CPVMSSM.

• ABsg()

computes the supersymmetric contribution to the asymmetry for B → Xsγ.

• EDMel(),EDMmu(),EDMTl()

return the value of the electric dipole moment of the electron, de, the muon,dµ, and of
Thallium, dT l in units of ecm.

13.4 The UMSSM

The independent parameters of the UMSSM are the standard model parameters and
weak scale soft SUSY parameters listed in UMSSM/work/models/vars1.mdl. All masses,
mixing matrices and parameters of the different sectors of the model are computed by
micrOMEGAs [?,?].

Some routines for computing constraints were taken from the MSSM and were adapted
to the UMSSM. For example • masslimits() which is essentially the same as in the MSSM

33

except that the constraint on the light Higgs mass from the LHC was removed as other
routines in the UMSSM include this constrain, or
• deltarho()

calculates the ∆ρ parameter in the UMSSM where in addition to MSSM contributions
a pure UMSSM tree-level contribution from the extended Abelian gauge boson sector is
included. Two other routines in C are included, Zinvisible() and Zprimelimits() that
were defined above.

The remaining routines for computing B-physics and Higgs observables as well as
the anomalous magnetic moment of the muon were taken from NMSSMTools_4.7.1 and
adapted to the UMSSM [?]. To call these routines UMSSMTools() has to be given. The
result is contained in four files (UMSSM_inp.dat, UMSSM_spectr.dat, UMSSM_decay.dat
and SM_decay.dat) and the WARNING messages from these routines can be displayed
with slhaWarnings(stdout). See the README of the UMSSM for further details.

14 Tools for new model implementation.

It is possible to implement a new particle physics model in micrOMEGAs. For this the
model must be specified in the CalcHEP format. micrOMEGAs then relies on CalcHEP to
generate the libraries for all matrix elements entering DM calculations. Below we describe
the main steps and tools for implementing a new model.

14.1 Main steps

• The command ./newProject MODEL
launched from the root micrOMEGAs directory creates the directory MODEL. This
directory and the subdirectories contain all files needed to run micrOMEGAs with
the exception of the new model files.

• The new model files in the CalcHEP format should then be included in the sub-
directory MODEL/work/models. The files needed are vars1.mdl, func1.mdl,
prtcls1.mdl, lgrng1.mdl, extlib1.mdl. For more details on the format and con-
tent of model files see [?].

• For odd particles and for the Higgs sector it is recommended to use the widths that
are (automatically) calculated internally by CalcHEP/micrOMEGAs. For this one
has to add the ’ !’ symbol before the definition of the particle’s width in the file
prtcls1.mdl, for example

Full name | P | aP|PDG |2*spin| mass |width |color|

Higgs 1 |h1 |h1 |25 |0 |Mh1 |!wh1 |1 |

• Some models contain external functions, if this is the case they have to be com-
piled and stored in the MODEL/lib/aLib.a library. These functions should be
written in C and both functions and their arguments have to be of type double.
The library aLib.a can also contain some functions which are called directly from
the main program. The MODEL/Makefile automatically launches make in the lib

34

directory and compiles the external functions provided the prototypes of these ex-
ternal functions are specified in MODEL/lib/pmodel.h. The user can of course
rewrite his own —lib/Makefile if need be.

If the new aLib.a library needs some other libraries, their names should be added
to the SSS variable defined in MODEL/Makefile.

The MODEL directory contains both C and FORTRAN samples of main routines.
In these sample main programs it is assumed that input parameters are provided in a
separate file. In this case the program can be launched with the command:

./main data1.par

Note that for the direct detection module all quarks must be massive. However the cross
sections do not depend significantly on the exact numerical values for the masses of light
quarks.

14.2 Automatic width calculation

Automatic width calculation can be implemented by inserting the ’ !’ symbol before the
name of the particle width in the CalcHEP particle table (file prtcls1.mdl). In this case
the width parameter should not be defined as a free or constrained parameter. Actually
the pWidth function described in section 10 is used for width calculation in this case. We
recommend to use the automatic width calculation for all particles from the ’odd’ sector
and for Higgs particles. For models which use SLHA parameter transfer (Section 14.5),
the automatic width option will use the widths contained in the SLHA file unless the user
chooses the option to ignore this data in the SLHA file, see section 14.5.

14.3 Using LanHEP for model file generation.

For models with a large number of parameters and various types of fields/particles such
as the MSSM, it is more convenient to use an automatic tool to implement the model.
LanHEP is a tool for Feynman rules generation. A few minor modifications to the de-
fault format of LanHEP have to be taken into account to get the model files into the
micrOMEGAs format.

• The lhep command has to be launched with the -ca flag

lhep -ca source_file

• The default format for the file prtcls1.mdl which specifies the particle content has
to be modified to include a column containing the PDG code of particles. For this,
first add the following command in the LanHEP source code, before specifying the
particles

prtcformat fullname:

’Full Name ’, name:’ P ’, aname:’ aP’, pdg:’ number ’,

spin2,mass,width, color, aux, texname: ’> LaTeX(A) <’,

atexname:’> LateX(A+) <’ .

35

Then for each particle define the PDG code. For instance:
vector ’W+’/’W-’: (’W boson’, pdg 24, mass MW, width wW).

• LanHEP does not generate the file extlib1.mdl. micrOMEGAs works without this
file but it is required for a CalcHEP interactive session. The role of this file is to
provide the linker with the paths to all user’s libraries needed at compilation. For
example for the lib/aLib.a library define

$CALCHEP/../MODEL/lib/aLib.a

For examples see the extlib1.mdl files in the directory of the models provided.

14.4 QCD functions

Here we describe some QCD functions which can be useful for the implementation of a
new model.
• initQCD(alfsMZ,McMc,MbMb,Mtp)

This function initializes the parameters needed for the functions listed below. It has to
be called before any of these functions. The input parameters are the QCD coupling at
the Z scale, αs(MZ), the quark masses, mc(mc),mb(mb) and mt(pole).
• alphaQCD(Q)

calculates the running αs at the scale Q in the MS scheme. The calculation is done using
the NNLO formula in [?]. Thresholds for the b-quark and t-quark are included in nf at the
scales mb(mb) and mt(mt) respectively.
• MtRun(Q), MbRun(Q), McRun(Q)

calculates top, bottom and charm quarks running masses evaluated at NNLO.
• MtEff(Q), MbEff(Q), McEff(Q),

calculates effective top, bottom and charm quark masses using [?]

M2
eff (Q) = M(Q)2

[

1 + 5.67a+ (35.94− 1.36nf)a
2

+ (164.14− nf (25.77− 0.259nf))a
3
]

(11)

where a = αs(Q)/π, M(Q) and αs(Q) are the quark masses and running strong coupling
in the MS-scheme. In micrOMEGAs, we use the effective quark masses calculated at the
scale Q = 2Mcdm. In some special cases one needs a precise treatment of the light quarks
masses. The function
• MqRun(M2GeV, Q)

returns the running quark mass defined at a scale of 2 GeV. The corresponding effective
mass needed for the Higgs decay width is given by
• Mqeff(M2GeV, Q)

14.5 SLHA reader

Very often the calculation of the particle spectra for specific models is done by some
external program which writes down the particle masses, mixing angles and other model
parameters in a file with the so-called SLHA format [?,?]. The micrOMEGAs program

36

contains routines for reading files in the SLHA format. Such routines can be very useful
for the implementation of new models.

In general a SLHA file contains several pieces of information which are called blocks. A
block is characterized by its name and, sometimes, by its energy scale. Each block contains
the values of several physical parameters characterized by a key. The key consists in a
sequence of integer numbers. For example:

BLOCK MASS # Mass spectrum

PDG Code mass particle

25 1.15137179E+02 # lightest neutral scalar

37 1.48428409E+03 # charged Higgs

BLOCK NMIX # Neutralino Mixing Matrix

1 1 9.98499129E-01 # Zn11

1 2 -1.54392008E-02 # Zn12

BLOCK Au Q= 4.42653237E+02 # The trilinear couplings

1 1 -8.22783075E+02 # A_u(Q) DRbar

2 2 -8.22783075E+02 # A_c(Q) DRbar

• slhaRead(filename,mode)

downloads all or part of the data from the file filename. mode is an integer which
determines which part of the data should be read form the file, mode= 1*m1+2*m2+4*m4

where

m1 = 0/1 - overwrites all/keeps old data

m2 = 0/1 - reads DECAY /does not read DECAY

m4 = 0/1 - reads BLOCK/does not read BLOCK

For example mode=2 (m1=0,m2=1) is an instruction to overwrite all previous data and read
only the information stored in the BLOCK sections of filename. In the same manner
mode=3 is an instruction to add information from DECAY to the data obtained previously.
slhaRead returns the values:

0 - successful reading

-1 - can not open the file

-2 - error in spectrum calculator

-3 - no data

n>0 - wrong file format at line n

• slhaValExists(BlockName, keylength, key1, key2,...)

checks the existence of specific data in a given block. BlockName can be substituted
with any case spelling. The keylength parameter defines the length of the key set
{key1,key2,...}. For example slhaValExists("Nmix",2,1,2) will return 1 if the neu-
tralino mass mixing element Zn12 is given in the file and 0 otherwise.
• slhaVal(BlockName,Q, keylength, key1, key2,......)

is the main routine which allows to extract the numerical values of parameters. BlockName
and keylength are defined above. The parameter Q defines the scale dependence. This
parameter is relevant only for the blocks that contain scale dependent parameters, it will
be ignored for other blocks, for example those that give the particle pole masses. In

37

general a SLHA file can contain several blocks with the same name but different scales
(the scale is specified after the name of the block). slhaVal uses the following algorithm
to read the scale dependent parameters. If Q is less(greater) than all the scales used in
the different blocks for a given parameter slhaVal returns the value corresponding to
the minimum(maximum) scale contained in the file. Otherwise slhaVal reads the values
corresponding to the two scales Q1 and Q2 just below and above Q and performs a linear
interpolation with respect to log(Q) to evaluate the returned values.

Recently it was proposed to use an extension of the SLHA interface to transfer Flavour
Physics data [?]. Unfortunately the structure of the new blocks is such that they cannot
be read with the slhaVal routine. We have added two new routines for reading such data
• slhaValFormat(BlockName, Q, format)

where the format string allows to specify data which one would like to extract from the
given block BlockName. For instance, to get the b → sγ branching ratio from the block

Block FOBS # Flavour observables

ParentPDG type value q NDA ID1 ID2 ID3 ... comment

5 1 2.95061156e-04 0 2 3 22 # BR(b->s gamma)

521 4 8.35442304e-02 0 2 313 22 # Delta0(B->K* gamma)

531 1 3.24270419e-09 0 2 13 -13 # BR(B_s->mu+ mu-)

...

one has to use the command slhaValFormat("FOBS", 0., "5 1 %E 0 2 3 22"). In
this command the format string is specified in C-style. The same routine can be used to
read HiggsBound SLHA output.

A block can also contain a textual information. For example, in HIGGSBOUNDS a block
contains the following records,

Block HiggsBoundsResults

#CHANNELTYPE 1: channel with the highest statistical sensitivity

1 1 328 # channel id number

1 2 1 # HBresult

1 3 0.72692779334500290 # obsratio

1 4 1 # ncombined

1 5 ||(p p)->h+..., h=1 where h is SM-like (CMS-PAS-HIG-12-008)|| # text description of channel

In particular, the last record contains the name of the channel which gives the strongest
constraint on the Higgs. To extract the name of this channel one can use the new function

• slhaSTRFormat("HiggsBoundsResults","1 5 || %[^|]||",channel);

which will write the channel name in the text parameter channel.
• slhaWarnings(fileName)

writes into the file the warnings or error message stored in the SPINFO block and returns
the number of warnings. If FD=NULL the warnings are not written in a file.
• slhaWrite(fileName)

writes down the information stored by readSLHA into the file. This function can be used
for testing purposes.

SLHA also describes the format of the information about particle decay widths. Even
though micrOMEGAs also performs the width calculation, one might choose to read the
information from the SLHA file.
• slhaDecayExists(pNum)

checks whether information about the decay of particle pNum exists in the SLHA file.

38

pNum is the particle PDG code. This function returns the number of decay channels. In
particular zero means that the SLHA file contains information only about the total width,
not on branching ratios while -1 means that even the total width is not given.
• slhaWidth(pNum)

returns the value of particle width.
• slhaBranch(pNum,N, nCh)

returns the branching ratio of particle pNum into the N-th decay channel. Here
0<N<=slhaDecayExists(pNum). The array nCh is an output which specifies the PDG
numbers of the decay products, the list is terminated by zero.

The functions slhaValExists, slhaVal, slhaDecayExists, slhaWidth can be used
directly in CalcHEP model files, see an example in
MSSM/calchep/models/func2.mdl. Note that in this example the call to slhaRead is
done within the function suspectSUGRAc.

14.5.1 Writing an SLHA input file

We have included in the micrOMEGAs package some routines which allow to write an
SLHA input file and launch the spectrum generator via the CalcHEP constraints menu.
This way a new model can be implemented without the use of external libraries. The
routines are called from func1.mdl, see example below.
• openAppend(fileName)

deletes the input file fileName and stores its name. This file will then be filled with the
function aPrintF.
• aPrintF(format,...)

opens the file fileName and writes at the end of the file the input parameters needed in
the SLHA format or in any other format understood by the spectrum calculator. The
arguments of aPrintF are similar to the arguments of the standard printf function.
• System(command, ...) generates a command line which is launched by the standard
system C-function. The parameter command works here like a format string and can
contain %s, %d elements. These are replaced by the next parameters of the System call.

For example to write directly the SLHA model file needed by SuSpect to compute
the spectrum in a CMSSM(SUGRA) model, one needs to add the following sequence in
the func1.mdl model file.

open |openAppend("suspect2_lha.in")

input1|aPrintF("Block MODSEL # Select model\n 1 1 # SUGRA\n")

input2|aPrintF("Block SMINPUTS\n 5 %E#mb(mb)\n 6 %E#mt(pole)\n",MbMb,Mtp)

input3|aPrintF("BLOCK MINPAR\n 1 %E #m0\n 2 %E #m1/2\n ",Mzero,Mhalf)

input4|aPrintF("3 %E #tb\n 4 %E #sign(mu)\n 5 %E #A0\n",tb,sgn,A0)

sys |System("./suspect2.exe")

rd |slhaRead("suspect2_lha.out",0)

It is possible to cancel the execution of a program launched with System if it runs
for too long. For this we have introduced two global parameters sysTimeLim and
sysTimeQuant. sysTimeLim sets a time limit in milliseconds for System execution, if
sysTimeLim==0 (the default value) the execution time is not checked. The time interval
between checks of the status of the program launched with System is specified by the
parameter sysTimeQuant, the default value is set to 10. Note that it is preferable not too

39

use too large a value for sysTimeQuant as it defines the lower time limit for a system call.
In Fortran use call setSysTimeLim(sysTimeLim,sysTimeQuant) to reset the default
time control parameters.

The function prototypes are available in
CalcHEP_src/c_source/SLHAplus/include/SLHAplus.h

14.6 Routines for diagonalisation.

Very often in a new model one has to diagonalize mass matrices. Here we present some
numerical routines for diagonalizing matrices. Our code is based on the jacobi routine
provided in [?]. To use the same routine for a matrix of arbitrary size, we use a C option
that allows to write routines with an arbitrary number of arguments.
• initDiagonal() should be called once before any other rDiagonal(A) routine described
below. initDiagonal() assigns zero value to the internal counter of eigenvalues and
rotation matrices. Returns zero.
• rDiagonal(d,M11,M12,..M1d,M22,M23...Mdd)

diagonalizes a symmetric matrix of dimension d. The d(d + 1)/2 matrix elements, Mij
(i ≤ j), are given as arguments. The function returns an integer number id which serves
as an identifier of eigenvalues vector and rotation matrix.
• MassArray(id, i)

returns the eigenvalues mi ordered according to their absolute values.
• MixMatrix(id,i,j)

returns the rotation matrix Rij where

Mij =
∑

k

RkimkRkj

A non-symmetric matrix, for example the chargino mass matrix in the MSSM, is
diagonalized by two rotation matrices,

Mij =
∑

k

UkimkVkj.

• rDiagonalA(d,M11,M12..M1d,M21,M22...Mdd)

diagonalizes a non-symmetric matrix, the d2 matrix elements, Mij, are given as arguments.
The eigenvalues and the V rotation matrix are calculated as above with MassArray and
MixMatrix.
• MixMatrixU(id,i,j)

returns the rotation matrix Uij .
The function prototypes can be found in

CalcHEP_src/c_source/SLHAplus/include/SLHAplus.h

15 Mathematical tools.

Some mathematical tools used by micrOMEGAs are available only in C format. Prototypes
of these functions can be found in

sources/micromegas_aux.h

40

• simpson(F, x1, x2, eps)

numerical integration of the function F (x) in the interval [x1, x2] with relative precision
eps. simpson uses an adaptive algorithm for integrand evaluation and increases the
number of function calls in the regions where the integrand has peaks.
• gauss(F,x1,x2,N)

performs Gauss N-point integration for N < 8.
• odeint(Y, Dim, x1, x2, eps,h1, deriv)

solves a system of Dim differential equations in the interval [x1, x2]. The Dim component
array Y contains the starting variables at x1 as an input and is replaced by the resulting
values at x2 as an output. eps determines the precision of the calculation and h1 gives
an estimation of step of calculation. The function deriv calculates Y ′

i = dYi/dx with the
call deriv(x, Y, Y ′). The Runge-Kutta method is used, see details in [?].
• stiff (first, x1, x2, Dim, Y, Yscal, eps, &htry,derivs)

• stifbs(first, x1, x2, Dim, Y, Yscal, eps, &htry,derivs)

these two functions solve stiff differential equations. Both routines are slightly adapted
codes from [?]. Here the parameters x1, x2, Dim, Y have the same meaning as in the
routine odeint above. The parameter first should be set to one for the first call to
routines with a given number of equations Dim and to zero for subsequent calls. The
flag first is used for memory allocation. If Yscale=NULL the parameter eps defines the
absolute precision of calculation (δYi < eps). Otherwise, the precision is defined by the
condition δYi < epsY scalei. The parameter htry defines the initial step of integration
and contains the last step of integration used during calculations. The function derivs

evaluates the differential equation F = dY/dx and its partial derivatives:
derivs(x, Y, F, h, dFdx,dFdY) where dFdY[i\cdot Dim+j]= dFi

dYj

This routine can be called with parameters dFdx=NULL and dFdY=NULL. The parameter h
presents current step of integration and can be used for numerical evaluation of dFdx.
• polint3(x,Dim,X,Y)

performs cubic interpolation for Dim-dimension arrays X,Y. Similar functions, polint1
performs linear interpolations.
• spline(x, y, dim, y2)

• splint(x, y, y2, dim, double x0, &y0)

spline constructs cubic spline and splint calculates spline interpolation y0 for given
point x0. Here x and y present grid of function arguments and function values yi = Y (xi)
Function spline fills array of second derivatives y2 which is used by splint.
• buildInterpolation(F,x1,x2,eps,delt, &Dim,&X,&Y)

constructs a cubic interpolation of the function F in the interval [x1, x2]. eps controls the
precision of interpolation. If eps < 0 the absolute precision is fixed, otherwise a relative
precision is required. The delt parameter limits distance between interpolation points:
|xi − xi+1| < delt|x2 − x1|. The function checks that after removing any grid point, the
function at that point can be reproduced with a precision eps using only the other points.
It means that the expected precision of interpolation is about eps/16. Dim gives the
number of points in the constructed grid. X and Y are variables of the double* type.
The function allocates memory for Dim array for each of these parameters. X[i] contains
the x-grid while Y [i] = F (X[i]).
• bessI0(x), bessK0(x), bessK2(x) the Bessel functions I0, K1, K2.

41

• K1pole(x)=K1(
1
x
)e

1

x

√

2
πx

; K2pole(x)=K2(
1
x
)e

1

x

√

2
πx

micrOMEGAs uses these functions for calculating the relic density. For small x = T/Mcdm

they are represented by polynomials in x such that large exponents in ratios of Bessel
functions are cancelled symbolically.
• FeldmanCousins(n0, b,cl)

is the Feldman-Cousins [?] function for Poisson distribution. Here n0 is the observed num-
ber of events, b - expected background, cl< 1 - the requested confidence level. Assuming
that there is some number of signal events in addition to background, this function sets
the upper limit on the number of signal events compatible with n0 and cl.
• ch2pval(Ch2exp,Ch2obs)

returns the p-value assuming a χ2 distribution with Ch2exp degrees of freedom (expected
χ2).

ch2pval(k, q) =

∫ ∞

q

1

2kΓ(k
2
)
Q

k
2
−1e−

Q
2 dQ

• displayPlot(title,xMin, xMax, xName, Dim, N, ...)

displays several curves/histograms on one plot. Here title contains some text, xMin,xXax
are the lower and upper limits, and N is the number of curves/histograms to display. After
the parameter N displayPlot expects 3N arguments, where each trine contains array of
function values, array of function uncertainty, and textual label for function. Tabulated
functions should correspond to a grid xi = xMin+(i+0.5)(xMax−xMin)/Dim, where
i = 1, ..., Dim− 1. When plotting a function, the uncertainty should be set to NULL.
• displayFunc(title, F,x1,x2, varName)

displays a plot of function F (x) in the [x1, x2] interval. title is a text which appears as
the title of the plot. varName is a name of x variable
• displayFunc10(title, F,x1,x2, varName)

displays F on log10(x) axis.

A An updated routine for b → sγ in the MSSM

The calculation of b → sγ was described in micromegas1.3 [?]. The branching fraction
reads

B(B̄ → Xsγ) = B(B̄ → Xceν̄)

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2
6αem

πf(z0)
KNLO(δ) (12)

where αem = 1./137.036, the factor KNLO involves the photon energy cut-off parameter δ
and f(z0) = 0.542− 2.23(

√
z0 − 0.29) depends on z0 = (mc/mb)

2 defined in terms of pole
masses. In the code the standard model and Higgs contribution at NLO were included as
well as the leading order SUSY contributions. However in the last few years the NNLO
standard model contribution has been computed [?] and shown to lead to large corrections,
shifting the standard model value by over 10%. It was also argued that the NNLO SM
result could be reproduced from the NLO calculation by appropriately choosing the scale
for the c-quark mass [?,?].

In this improved version of the bsgnlo routine, we have changed the default value for
the parameter z1 = (mc/mb)

2 where mc is the MS running charm mass mc(mb). Taking
z1 = 0.29 allows to reproduce the NNLO result. It is therefore no longer necessary to
apply a shift to the micromegas output of b → sγ to reproduce the SM value.

42

B(B̄ → Xceν̄) 0.1064 [?]
Csl 0.546 [?]

|V ∗
tsVtb/Vcb|2 0.9613 [?]

A 0.808
λ 0.2253
ρ̄ 0.132
η̄ 0.341

mb/ms 50
λ2 ≈ 1

4
(m2

B∗ −m2
B) 0.12GeV2 [?]

αs(MZ) 0.1189

Table 4: Default values in micrOMEGAs

We have also updated the default values for the experimentally determined quantities
in Eq. 12, see Table ??, and we have replaced the factor f(z0) by Csl where

Csl =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2
Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)
(13)

accounts for the mc dependence in B̄ → Xceν̄.
The CKM matrix elements in the Wolfenstein parametrisation given in Table ?? are

used to compute the central value of ckmf at order λ4,

ckmf =

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2

= 1 + λ2(2ρ̄− 1) + λ4(ρ̄2 + η̄2 − A2) (14)

With these default values the NLO- improved SM contribution is B(B̄ → Xsγ)|SM =
3.27× 10−4 which corresponds to the result of Gambino and Giordano [?] after correcting
for the slightly different CKM parameter used (ckmf = 0.963).

We have performed a comparison with superIso3.1 which includes the NNLO SM
calculation for 105 randomly generated MSSM scenarios. The results are presented in
Fig. ?? after applying a correction factor in superISO to account for the different value

for the overall factor F = B(B̄ → Xceν̄)
∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

2

/Csl. The ratio of Fmicro/FISO = 0.942.

The two codes agree within 5% most of the time.

43

Figure 1: Relative difference for B(B̄ → sγ) between micromegas2.4 and superIso3.1. the
vertical lines show the 3σ experimentally measured value.Numeri

44

