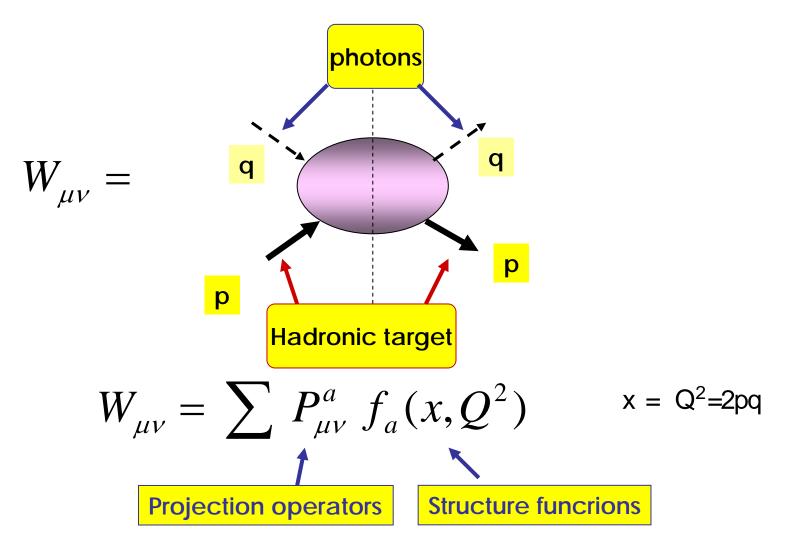
Orsay, 22 Nov 2010

B. I. Ermolaev

Requirements for initial parton densities following from factorization

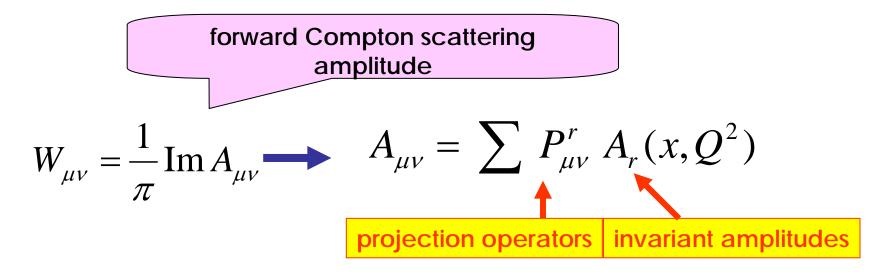
talk based on results obtained in collaboration with M. Greco and S.I. Troyan

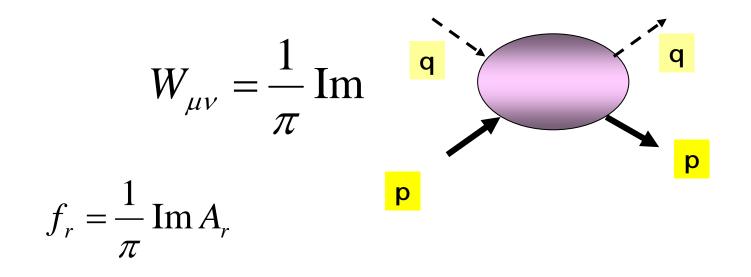


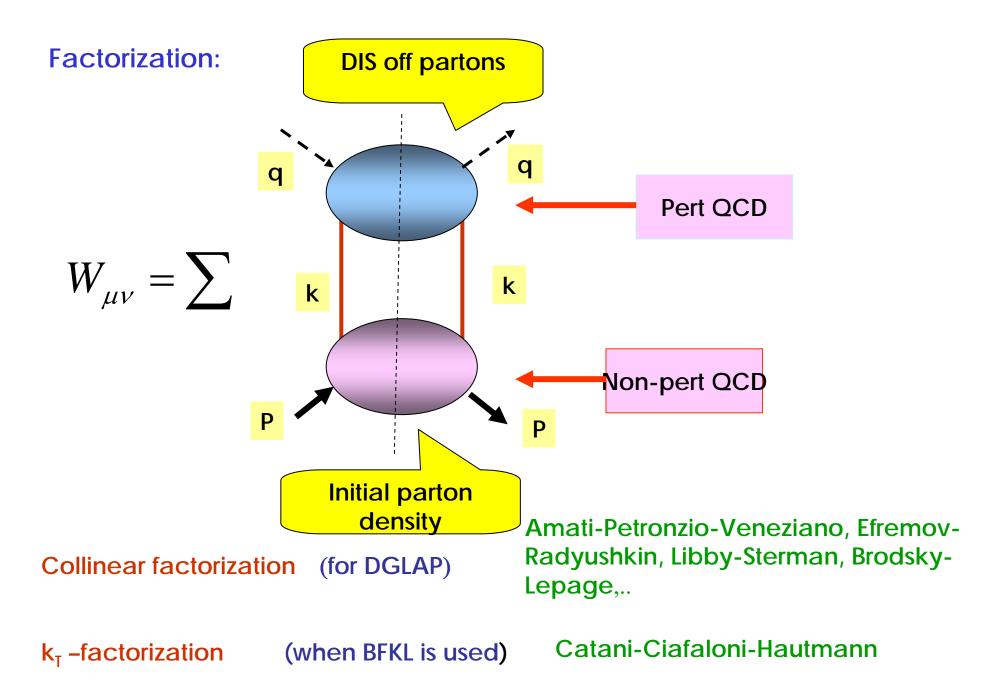
Φορ εξαμπλε:

$$W_{\mu\nu}^{unpol} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1(x,Q^2) + \frac{1}{pq}\left(p_{\mu} - q_{\mu}\frac{pq}{q^2}\right)\left(p_{\nu} - q_{\nu}\frac{pq}{q^2}\right)F_2(x,Q^2)$$

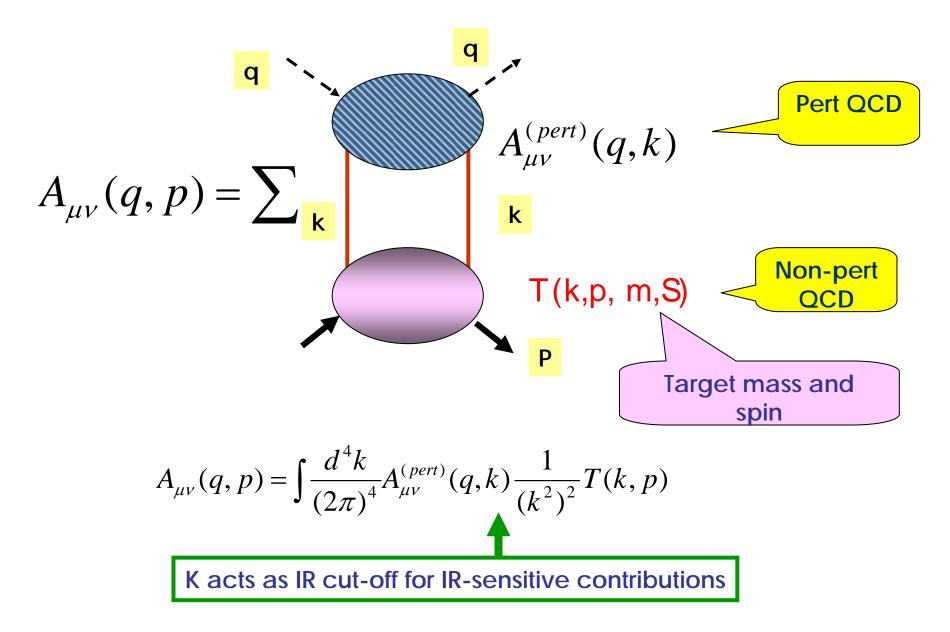
Optical Theorem:

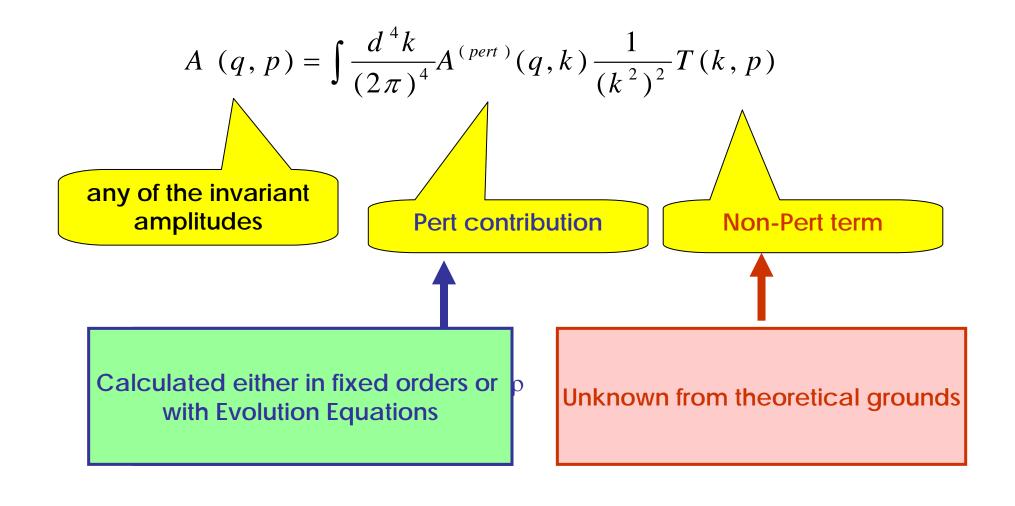






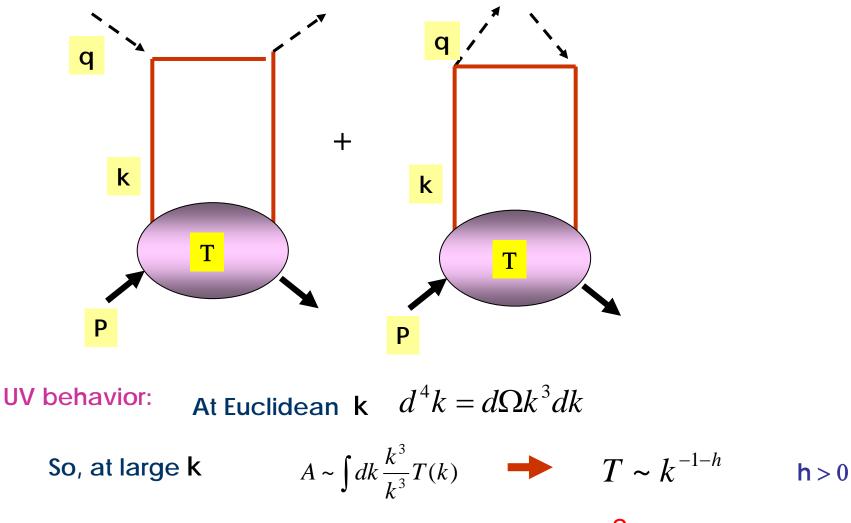
Amplitude of forward Compton scattering





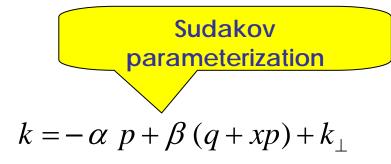
integration over k should be free of UV and IR
divergences

Born approximation



In Pert QCD T is gluon propagator: $T = 1/k^2$

In Minkowsky space:



So that

$$k^2 = -\alpha\beta w - k_{\perp}^2$$
, $2pk = -\alpha w$, $2qk = (\beta + x\alpha)w$

w= 2pq

$$A_{Born}^{(pert)} = \frac{\gamma_{\nu}(\hat{q} + \hat{k})\gamma_{\mu}}{(q+k)^2} + \frac{\gamma_{\mu}(-\hat{q} + \hat{k})\gamma_{\nu}}{(q-k)^2}$$

$$\int d\alpha \, \frac{1}{\hat{k}} A_{Born}^{(pert)}(q,k) \frac{1}{\hat{k}} T(k,p) \sim \int d\alpha \, \frac{\alpha^3}{\alpha^3} T(k,p)$$
$$\mathbf{T} \sim \alpha^{-1-\mathbf{h}}$$
$$T(p,k) = T((p+k)^2, k^2) = T(w\alpha, (w\alpha\beta + k_{\perp}^2))$$
$$\mathbf{h} > 0$$

At large α

Beyond the Born approximation

$$A(q, p) = \int \frac{d^4k}{(2\pi)^4} A^{(pert)}(q, k) \frac{B(k)}{k^2 k^2} T(k, p)$$

where
$$B(k) \approx (\alpha^2 + \beta^2) w + k_{\perp}^2$$
 perturbative non-pert

In the first place consider Perturbative amplitude A(pert)

$$A^{(pert)}(q,k) = A^{(pert)}((q+k)^2, k^2, q^2)$$

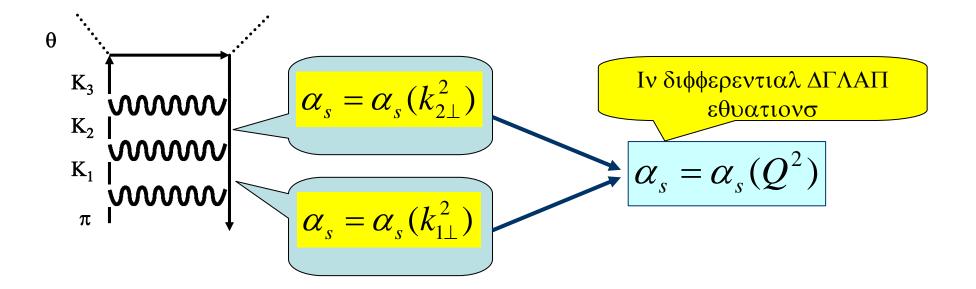
 k^2 plays the role of IR cut-off for IR-dependent terms in $A^{(pert)}$

Sources for k² -dependence:

A: k² acts as IR cut-off to regulate IR singularities in integrals, i.e. acts as the lowest integration limit

B. Treatment of QCD coupling

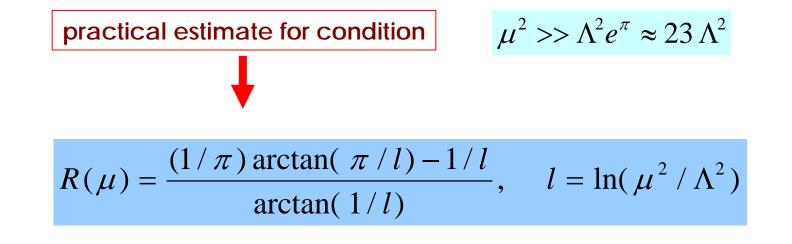
Parameterization of QCD coupling

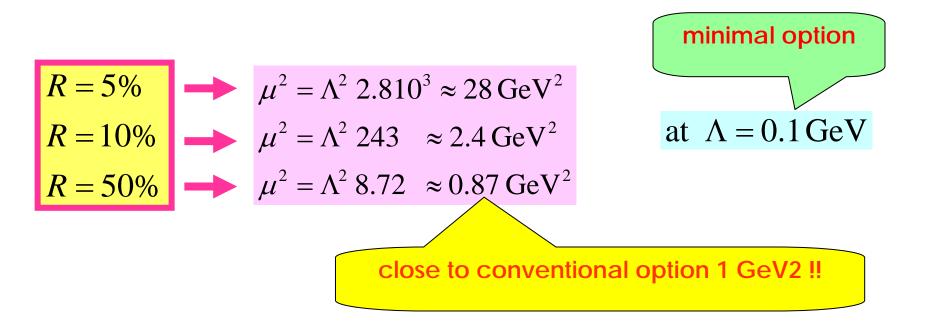


However, this parametrization is approximation. Analysis shows that in DGLAP expressions $\alpha_s(k_{\perp}^2)$ should be replaced by a more complicated expression: $\alpha_s(k_{\perp}^2) \longrightarrow \alpha_s^{eff}$

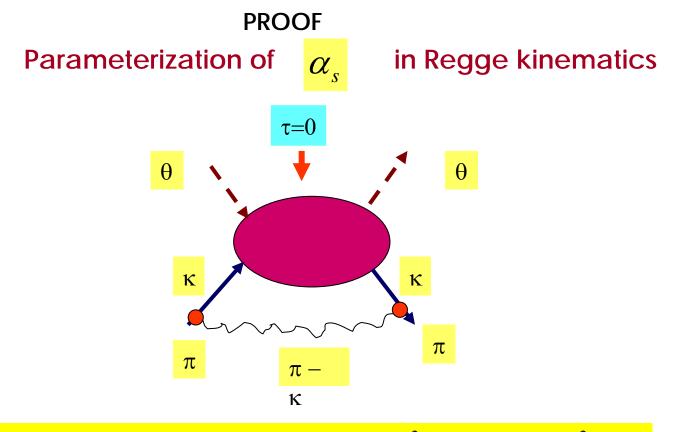
$$\alpha_{s}^{eff} = \alpha_{s}(\mu^{2}) + \frac{1}{\pi b} \left[\arctan\left(\frac{\pi}{\ln(k_{\perp}^{2}/\beta\Lambda^{2})}\right) - \arctan\left(\frac{\pi}{\ln(\mu^{2}/\Lambda^{2})}\right) \right]$$
IR -dependent terms
$$\mu$$
IR cut-off. In order to be in Perturbative regime
It should be large enough: $\mu \gg \Lambda$

when
$$\ln(\mu^2 / \Lambda^2) \gg \pi$$
 \longrightarrow $\arctan x \approx x$
 $\alpha_s^{eff} \approx \alpha_s(\mu^2) + \frac{1}{\pi b} \left[\frac{\pi}{\ln(k_\perp^2 / \beta \Lambda^2)} - \frac{\pi}{\ln(\mu^2 / \Lambda^2)} \right] = \alpha_s \left(k_\perp^2 / \beta \right)$





More realistic would be to change 0.1 GeV for 0.5 which causes increase of μ



$$\begin{split} M_s &= \frac{i}{4\pi^2} \int d\alpha d\beta dk_{\perp}^2 M(2qk,Q^2,k^2) \frac{sk_{\perp}^2}{(k^2 + i\varepsilon)^2} \frac{\alpha_s((p-k)^2)}{(p-k)^2 + i\varepsilon} \\ k &= -\alpha (q+xp) + \beta p + k_{\perp} \\ k^2 &= -s\alpha\beta - k_{\perp}^2, \quad (p-k)^2 = s\alpha - s\alpha\beta - k_{\perp}^2 \end{split}$$

$$m^2 \equiv (p-k)^2 \longrightarrow s\alpha = \frac{m^2 + k_\perp^2}{1-\beta}$$

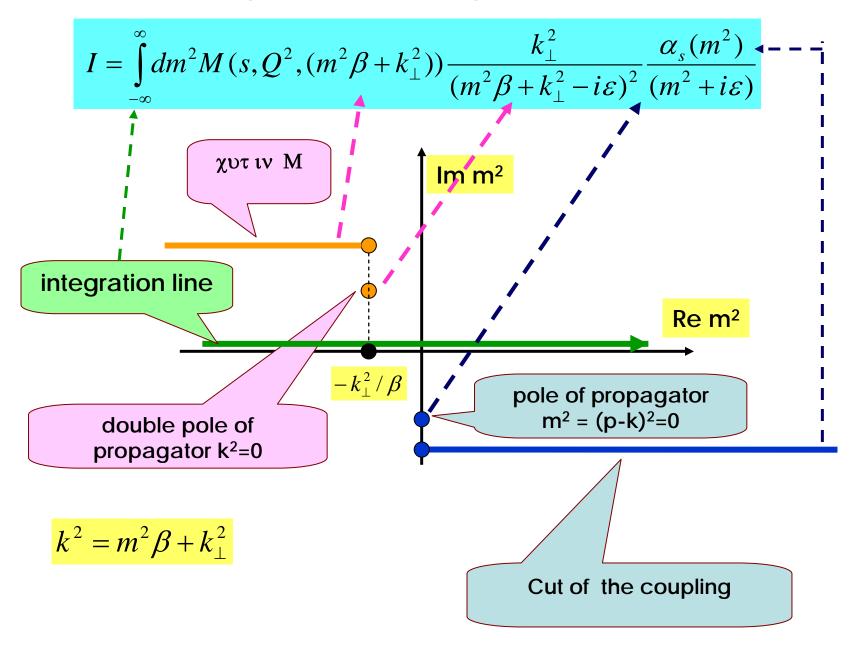
$$M_{s} = \frac{i}{4\pi^{2}} \int d\beta dk_{\perp}^{2} (1-\beta) I(s,Q^{2},\beta,k_{\perp}^{2})$$

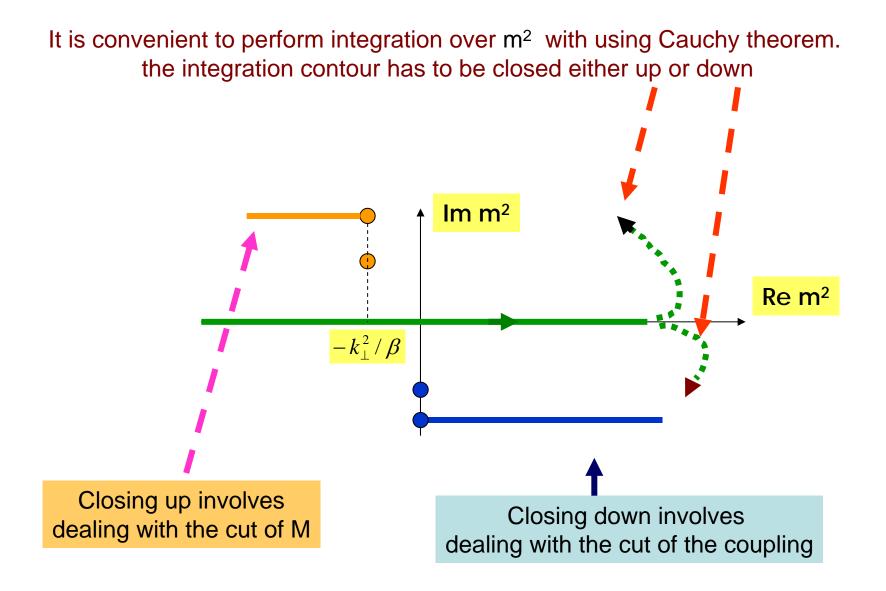
ωηερε

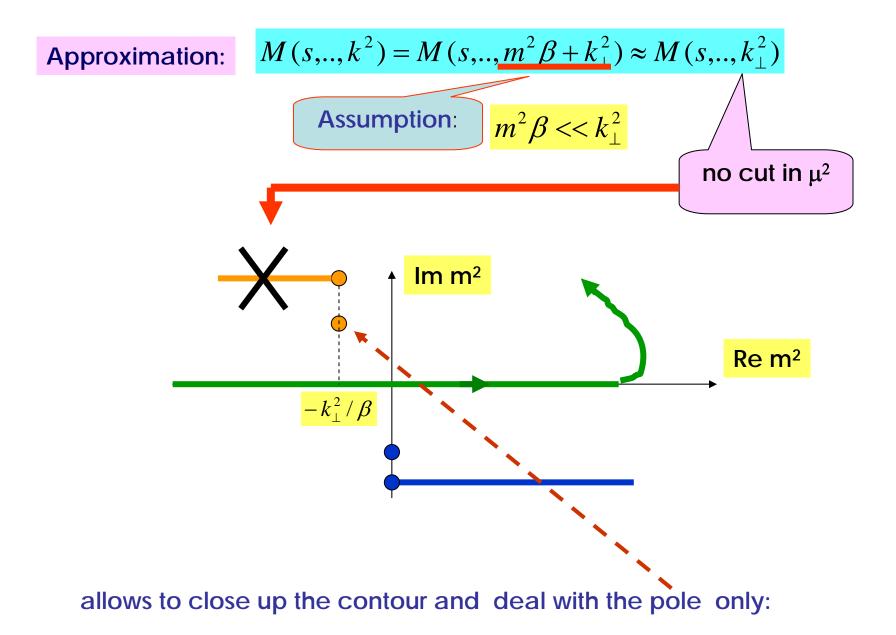
$$I = \int_{-\infty}^{\infty} dm^2 M(s, Q^2, (m^2\beta + k_{\perp}^2)) \frac{k_{\perp}^2}{(m^2\beta + k_{\perp}^2 - i\varepsilon)^2} \frac{\alpha_s(m^2)}{(m^2 + i\varepsilon)^2}$$

Before integrating over m², let us study singularities of the integrand

singularities of the integrand in μ^2

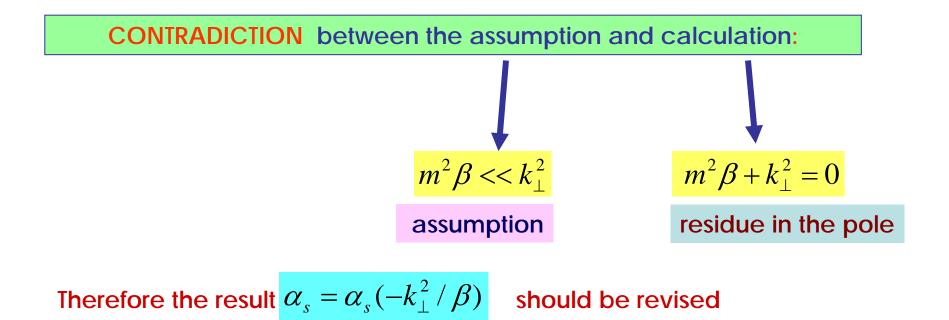




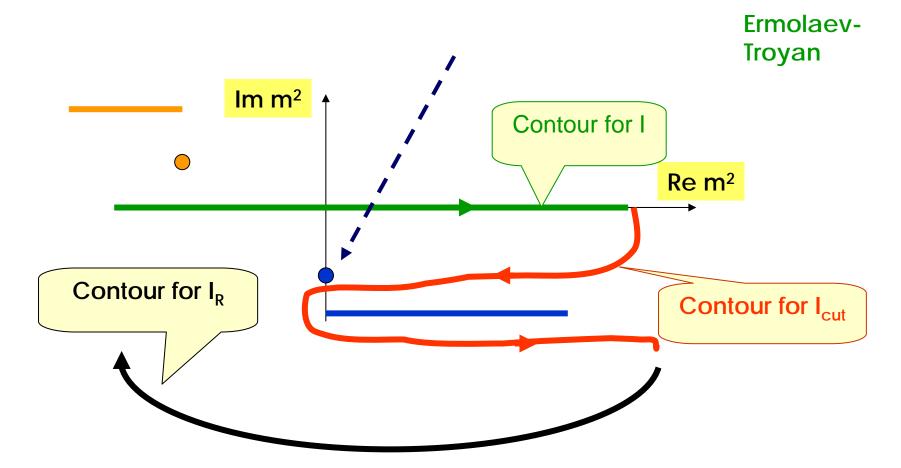


$$m^{2} = -k_{\perp}^{2} / \beta$$

$$\alpha_{s} = \alpha_{s}(-k_{\perp}^{2} / \beta)$$



we close the contour down to avoid dealing with singularities of M



Cauchy theorem:

$$I_c = I + I_R + I_{cut} = -2\pi i res$$
 in the pole at $m^2 = 0$

$$I_{C} = I + I_{R} + I_{cut} = -2\pi i \frac{(1-\beta)}{k_{\perp}^{2}} M(s, Q^{2}, -k_{\perp}^{2}/(1-\beta))\alpha_{s}(\mu^{2})$$

$$\mu^{2} \gg \Lambda^{2}$$
Introduced to regulate IR region

$$I_R \to 0 \text{ when } R \to \infty$$

$$I_{cut} = -2i \int_{\mu^2}^{\infty} dm^2 M(s, Q^2, (m^2 \beta + k_{\perp}^2)) \frac{(1-\beta)k_{\perp}^2}{(m^2 \beta + k_{\perp}^2 + i\varepsilon)^2} \frac{\operatorname{Im} \alpha_s(m^2)}{(m^2 + i\varepsilon)}$$

Assumption: if we assume that the essential region is

 $k_{\perp}^2 >> m^2 \beta$

$$I_{cut} \approx -2i \frac{\pi}{b} \frac{(1-\beta)}{k_{\perp}^{2}} M(s,Q^{2},k_{\perp}^{2}) \int_{\mu^{2}}^{k_{\perp}^{2}/\beta} \frac{dm^{2}}{m^{2}} \frac{1}{[\ln(m^{2}/\Lambda^{2}) + \pi^{2}]}$$

$$I = -2\pi i \frac{(1-\beta)}{k_{\perp}^{2}} M(s, Q^{2}, k_{\perp}^{2}) \alpha_{s}^{eff},$$

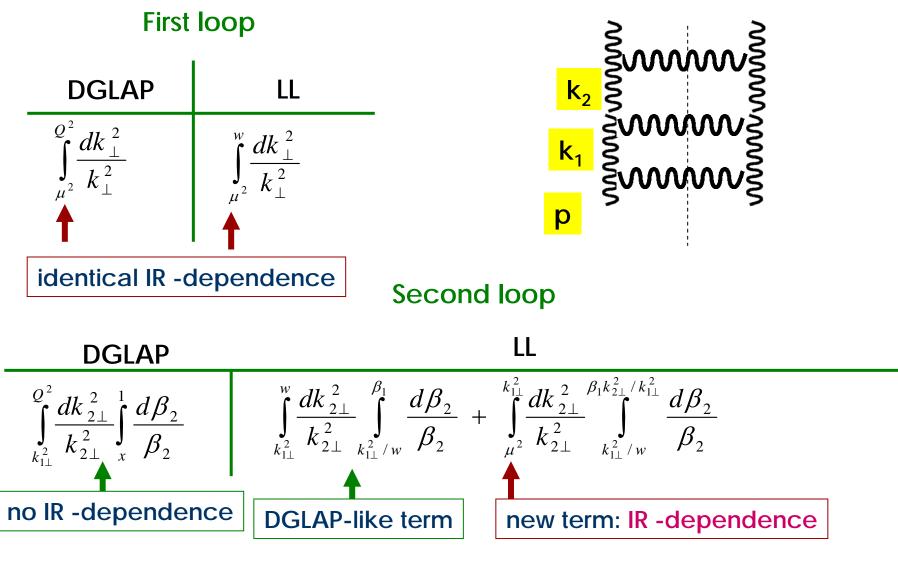
$$\alpha_{s}^{eff} = \alpha_{s}(\mu^{2}) + \frac{1}{\pi b} \left[\arctan\left(\frac{\pi}{\ln(k_{\perp}^{2}/\beta\Lambda^{2})}\right) - \arctan\left(\frac{\pi}{\ln(\mu^{2}/\Lambda^{2})}\right) \right]$$

$$= \alpha_{s}(\mu^{2}) + \frac{1}{\pi b} \left[\arctan\left(\pi b \alpha_{s}(k_{\perp}^{2}/\beta)\right) - \arctan\left(\pi b \alpha_{s}(\mu^{2})\right) \right]$$

$$\ln(\mu^{2}/\Lambda^{2}) \gg \pi \longrightarrow \alpha_{s}^{eff} \approx \alpha_{s}(k_{\perp}^{2}/\beta)$$
When additionally $x \sim 1 \longrightarrow \beta \sim 1 \longrightarrow \alpha_{s}(k_{\perp}^{2}/\beta) \approx \alpha_{s}(k_{\perp}^{2})$

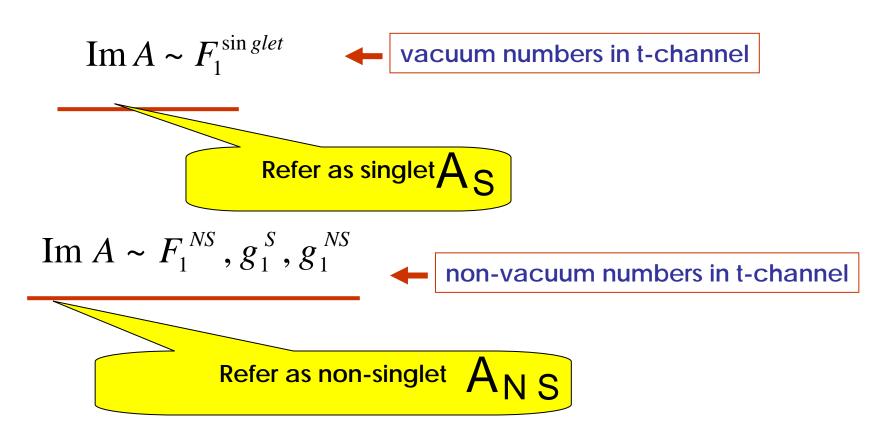
$$DGLAP \text{ region}$$
Therefore $\alpha_{s}^{eff} \approx \alpha_{s}(k_{\perp}^{2})$ only when $x \sim 1$ and $\mu^{2} \gg \Lambda^{2}e^{\pi}$

Treatment of gluon ladders: vertical propagators are IR-divergent



the same in higher loops

There are two different situations beyond Born approximation:



singlet and non-singlet have different IR-sensitive contributions:

$$A_{S}^{(pert)} = \left(\frac{w\beta}{k^{2}}\right) M_{S}\left(\ln(w\beta/k^{2}), \ln(Q^{2}/k^{2})\right)$$

$$A_{NS}^{(pert)} = M_{NS} \left(\ln(w\beta / k^2), \ln(Q^2 / k^2) \right)$$

Perturbative contributions M are different for different amplitudes and in different approaches but their arguments are always the same

$$M = \sum C_{kl} \ln^{k} (w\beta/k^{2}) \ln^{l} (Q^{2}/k^{2}) + \text{non-logarithmic contributions}$$

$$k^{2} = -\alpha\beta w - k_{\perp}^{2}$$
Do not involve powers α^{n}

$$A_{S} = \int dk_{\perp}^{2} \frac{d\beta}{\beta} d\alpha \left(\frac{w\beta}{k^{2}}\right) M_{S} \left(\ln(w\beta/k^{2}), \ln(Q^{2}/k^{2})\right) \frac{B(k)}{(k^{2})^{2}} T_{S}(w\alpha, k^{2})$$
$$A_{NS} = \int dk_{\perp}^{2} \frac{d\beta}{\beta} d\alpha M_{NS} \left(\ln(w\beta/k^{2}), \ln(Q^{2}/k^{2})\right) \frac{B(k)}{(k^{2})^{2}} T_{NS}(w\alpha, k^{2})$$

Now let us integrate over α neglecting α -dependence in logs

Application to DIS structure functions

$$f_{s} = \int dk_{\perp}^{2} \frac{d\beta}{\beta} w\beta f_{s}^{(pert)} (\ln(w\beta/k^{2}), \ln(Q^{2}/k^{2})) \int d\alpha \frac{B(k)}{(k^{2})^{3}} \operatorname{Im} T_{s}(w\alpha, k^{2})$$
stands for singlet F₁ only
$$k^{2} = -\alpha\beta w - k_{\perp}^{2}$$

$$f_{NS} = \int dk_{\perp}^{2} \frac{d\beta}{\beta} f_{NS}^{(pert)} (\ln(w\beta/k^{2}), \ln(Q^{2}/k^{2})) \int d\alpha \frac{B(k)}{(k^{2})^{2}} \operatorname{Im} T_{NS}(w\alpha, k^{2})$$
any of F₁^{N S}; F₂; g₁^S; g₁^{N S}; g₂ No factorization in $\alpha \beta$

Factorization is only when

 $\alpha\beta w \ll k_{\perp}^{2}$

When it is accepted, we arrive at the standard expressions

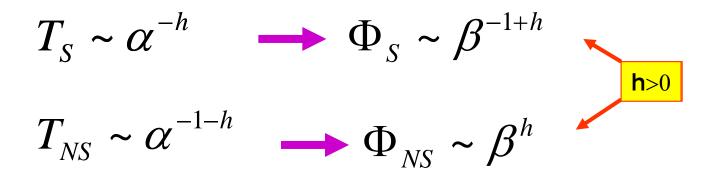
ſ

Singlet
$$f_{S} = \int \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \frac{d\beta}{\beta} \left(\frac{w\beta}{k_{\perp}^{2}}\right) f_{S}^{(pert)} \left(\ln(w\beta/k_{\perp}^{2}), \ln(Q^{2}/k_{\perp}^{2})\right) \Phi_{S}(\beta, k_{\perp}^{2})$$

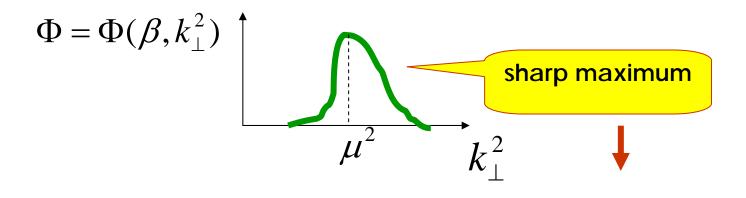
Non-singlet
$$f_{NS} = \int \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \frac{d\beta}{\beta} f_{NS}^{(pert)} \left(\ln(w\beta/k_{\perp}^{2}), \ln(Q^{2}/k_{\perp}^{2})\right) \Phi_{NS}(\beta, k_{\perp}^{2})$$

Where the singlet and non-singlet initial parton densities are

$$\Phi_{S} = \int_{k_{\perp}^{2}/w}^{k_{\perp}^{2}/w\beta} d\alpha \operatorname{Im} T_{S}(w\alpha, k_{\perp}^{2}) \qquad \Phi_{NS} = \int_{k_{\perp}^{2}/w}^{k_{\perp}^{2}/w\beta} d\alpha \operatorname{Im} T_{NS}(w\alpha, k_{\perp}^{2})$$



Transition to DGLAP: Collinear factorization



For instance: $\Phi = \widetilde{\Phi}(\beta, k_{\perp}^2) \delta(k_{\perp}^2 - \mu^2)$

$$f = \int \frac{d\beta}{\beta} f^{(pert)} \left(\ln(w\beta/\mu^2), \ln(Q^2/\mu^2) \right) \Phi (\beta, \mu^2)$$

Explicit dependence on μ^2 even after convoluting pert and non-pert

However, there is no μ^2 dependence in the case of DGLAP because DGLAP collects leading logs of Q² only, Sub-leading logs will be μ^2 -dependent

$$\ln^{n}(Q^{2} / \mu_{1}^{2}) = \ln^{n}(Q^{2} / \mu_{2}^{2})$$
 + sub-leading

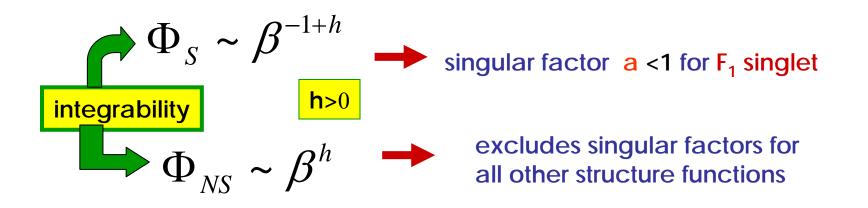
Comparison to standard DGLAP fits:

Altarell-Bal-Forte-Ridolfi, Leader-Sidorov-Stamenov, Blumlein-Botcher, Hirai,...

Typical expressions:

parameters a,b,c,d > 0

$$\delta q$$
, $\delta g = x^{-a} (1-x)^{b} (1+cx^{d})$
singular factor regular terms



However in practice these requirements are violated

Reason why singular factors are necessary in DGLAP at small ξ

DGLAP does not include resummations of ~ $\ln^k (1/x)$, so without singular factors χ^{-a} DGLAP expressions grow too slowly to match experiment

Factors χ^{-a} bring the appropriate growth at small x They mimic resummation of $\sim \ln^k (1/x)$ and eventually, at $x \to 0$ they change the classic DGLAP asymptotics for the Regge one $f \sim \chi^{-a}$ $f \sim \exp\left[\sqrt{\ln(1/x)}\right]$

When the resummation is accounted for, they should be dropped, which simplifies fits

Conclusion A (perturbative QCD)

- A1. Strictly speaking, the QCD coupling in the Bethe-Salpeter equations for the scattering amplitudes/parton densities/structure functions cannot be factorized
- A2. Factorization of the coupling is approximation and leads to converting α_s into α_s^{eff}

A3. For the hard processes we confirm known result:

$$\alpha_s^{eff} = \alpha_s (k_\perp^2 / (1 - \beta)) \approx \alpha_s (k_\perp^2)$$

A4. For the Regge processes and evolution equations

$$\alpha_s^{eff} = \alpha_s(\mu^2) + \frac{1}{\pi b} \left[\arctan\left(\pi b \,\alpha_s(k_\perp^2 / \beta)\right) - \arctan\left(\pi b \,\alpha_s(\mu^2)\right) \right]$$

and it explicitly depends on the IR cut-off/starting point of the Q² –evolution i.e. exhibits really non-trivial IR -dependence

A5. Alternatively, one can use Mellin transform

CONCLUSION B (Non-Perturbative part)

Integrability of forward Compton amplitudes imposes the following restrictions on DGLAP fits for initial parton densities:

B1. Singular factors χ^{-a} can be used in fits for singlet F₁ only, providing a<1

B2. Singular factors should not be used for all other structure functions. Instead, one should use total resummation of

B3. Necessity to use singular factors is a good indication that important logs of x are missing from theoretical expressions

In general, the use of collinear factorization brings dependence factorization scale. However, DGLAP -expressions for structure functions do not depend on it because DGLAP deals with leading logs of Q² and neglect sub-leading logs