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Optical Theorem:

invariant amplitudes

forward Compton scattering 
amplitude
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Factorization:
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DIS off partons

Initial parton
density

Pert QCD

Non-pert QCD

Collinear factorization for DGLAP

kT –factorization (when BFKL is used)

Amati-Petronzio-Veneziano, Efremov-
Radyushkin, Libby-Sterman, Brodsky-
Lepage

Catani-Ciafaloni-Hautmann
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Amplitude of forward Compton scattering

K acts as IR cut-off for IR-sensitive contributions
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any of the invariant 
amplitudes Pert contribution Non-Pert term
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Calculated either in fixed orders or 
with Evolution Equations Unknown from theoretical grounds

integration over k should be free of UV and IR 
divergences
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Born approximation
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So, at large k
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UV behavior:

In Pert QCD T is gluon propagator: T = 1/ k2
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So that

w= 2pq

In Minkowsky space:  
Sudakov

parameterization
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At large     

Beyond the Born approximation
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In the first place consider Perturbative amplitude A(per t )

k2 plays the role of IR cut-off for IR-dependent terms in A(per t )

Sources for k2 –dependence:

A:  k2 acts as IR cut-off to regulate IR singularities in integrals,
i.e. acts as the lowest integration limit

B. Treatment of QCD coupling
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Parameterization of QCD coupling

However, this parametrization is approximation. Analysis shows 
that in DGLAP expressions                       should be replaced by 
a more 
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is IR cut-off. In order to be in Perturbative regime 
It should be large enough: 




  )/ln( 22when

IR –dependent terms Ermolaev - Troyan






























 )/ln(

arctan
)/ln(

arctan1)( 2222
2










kbs
eff
s

xx arctan

 







 /

)/ln()/ln(
1)( 2

2222
2

















 k
kb ss

eff
s



)/ln(     ,
)/1arctan(

/1)/arctan()/1()( 22 


  l
l

llR

%50
%10

%5





R
R
R

222

222

2322

GeV 87.0   72.8 
GeV 4.2    243 
GeV 28810.2 












GeV 1.0at  

practical estimate for condition

close to conventional option 1 GeV2 !!

minimal option

222  23  e

More realistic would be to change 0.1 GeV for 0.5 which causes increase of 



Parameterization of                in Regge kinematics  
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singularities of the integrand in 

pole of propagator 
m2 = (p-k)2=0

Cut of  the coupling



double pole of  
propagator k2=0
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Re m2

Im m2

/2
 k

It is convenient to perform integration over m2 with using Cauchy theorem. 
the integration contour has to be closed either up or down

Closing up involves 
dealing with the cut of M Closing down involves 

dealing with the cut of the coupling
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Im m2

Re m2

Contour for Icut
Contour for IR

we close the contour down to avoid dealing with singularities of M

0at   pole  in the    2 2  mresiIIII cutRC 

Cauchy theorem:

Ermolaev-
Troyan

Contour for I
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First loop

Treatment of gluon ladders: vertical propagators are IR-divergent

DGLAP LL

new term: IR -dependence

Second loop

DGLAP LL

identical IR -dependence

no IR -dependence

the same in higher loops

DGLAP-like term
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There are two different situations beyond Born approximation:  

vacuum numbers in t-channel

non-vacuum numbers in t-channel

Refer as singlet

Refer as non-singlet
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gletFA sin
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NSSNS ggFA 111 ,,~Im



singlet and non-singlet have different IR-sensitive contributions:

Perturbative contributions M are different for different amplitudes 
and in different approaches but their arguments are always the same 

+ non-logarithmic contributions

Do not involve 
powers 
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Now let us integrate over neglecting          -dependence in logs

to arrive at

Obligatory for 
integrability
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Application to DIS structure functions

stands for singlet F1 only

FN S
1 ; F2; gS

1 ; gN S
1 ; g2any of

Factorization is only when
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Singlet 

Non-singlet

When it is accepted, we arrive at the standard expressions 
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Where the singlet and non-singlet initial parton densities are
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Transition to DGLAP: Collinear factorization

sharp maximum

For instance:
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Explicit dependence on      even after convoluting pert and non-pert 

However, there is no          dependence in the case of DGLAP because DGLAP 
collects leading logs of Q2 only, Sub-leading logs will be         -dependent

+ sub-leading
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Comparison to standard DGLAP fits:

parameters a,b,c,d 

singular factor a <1 for F1 singlet

excludes singular factors for 
all other structure functions

singular factor regular terms

Typical expressions: 

integrability

Altarell-Bal-Forte-Ridolfi, Leader-Sidorov-Stamenov,
Blumlein-Botcher, Hirai,…
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Reason why singular factors are necessary in DGLAP at small 

DGLAP does not include resummations of                     , so  without 
singular factors                DGLAP expressions grow too slowly to match 
experiment

Most important 
at small x

Factors              bring the appropriate growth at small x 
They mimic resummation of and eventually, at x -> 0
they change the classic DGLAP  asymptotics
for the Regge one

When the resummation is accounted for, they should be dropped, 
which simplifies fits

However in practice these requirements are violated

)/1(ln~ xk

ax

ax

)/1(ln~ xk

 )/1ln(exp~ xfaxf ~



Conclusion A (perturbative QCD)

A1. Strictly speaking, the QCD coupling in the Bethe-Salpeter equations for 
the scattering amplitudes/parton densities/structure functions cannot 
be factorized

A2. Factorization of the coupling is approximation and leads to converting
intos

For the hard processes  we 
confirm known result:
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For the Regge processes and evolution equations 

and it explicitly depends on the IR cut-off/starting point of the Q2 –evolution 
i.e. exhibits  really non-trivial IR -dependence 

A5. Alternatively, one can use Mellin transform
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CONCLUSION B (Non-Perturbative part)

Integrability of forward Compton amplitudes imposes the following 
restrictions on DGLAP fits for initial parton densities:  

B1. Singular factors               can be used in fits for singlet F1 only,   
providing  a<1

B2. Singular factors should not be used for all other structure functions. 
Instead, one should use total resummation of 

B3. Necessity to use singular factors is a good indication that important 
logs of x are missing from theoretical expressions     

In general, the use of collinear factorization brings dependence
factorization  scale. However, DGLAP -expressions for structure 
functions do not depend on it because DGLAP deals with leading 
logs of Q2 and neglect sub-leading logs                          
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