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Radyushkin, Libby-Sterman, Brodsky-
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Collinear factorization (for DGLAP)

k, —factorization (when BFKL is used)  Catani-Ciafaloni-Hautmann
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Calculated either in fixed orders or
with Evolution Equations

Unknown from theoretical grounds

divergences

integration over K should be free of UV and IR | == requirements for T




Born approximation
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UV behavior:  ateuclidean k= 0%k = dQk>dk
3
So, at large k A~ jdk%T(k) - T~k h>0

In Pert QCD T is gluon propagator: | = 1/ k2



In Minkowsky space:
Sudakov ::]
parameterization

k=—a p+£(q+xp)+k,
So that
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w= 2pq
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At large (¢
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[ da = A (@0 T (k, p) = [da 5T (k. p)
K a

T ~ o~ 1-h

T(p.K) =T((p+K)%k2) =T (Wer, (WaB +k?)) n>0
Beyond the Born approximation
dk B(k)
A(q, p) = AP (q, T(k, p
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where
?erturbatlve dn pert
B(K) ~ (a? + f2)w+k? j




In the first place consider Perturbative amplitude A(per t)

AP (g,k) = AP ((q+K)? K, 07)

k2 plays the role of IR cut-off for IR-dependent terms in A(per t)

Sources for k? -dependence:

A: k2 acts as IR cut-off to regulate IR singularities in integrals,
l.e. acts as the lowest integration limit

B. Treatment of QCD coupling



Parameterization of QCD coupling

Iv 81¢¢8p8vuoak AFAAHj
« IVVU\NUV a, = U (k aﬁuomovcs
2
=
\AVAVATAVATAV) 5 (Q )
n | M Us = U (le

However, this parametrization is approximation. Analysis shows

that in DGLAP expressions a (k ) should be replaced by
a more

complicated >
expression: (K1) —>a§ﬁ
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H IR cut-off. In order to be in Perturbative regime
It should be large enough: u>> A

when IN(u° [ A?) >> 7 = AICtAN X = X jv
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practical estimate for condition 0’ >>Ne" =23\

v

(1/ r)arctan( # /1) -1/
arctan(1/1)

[minimal option
=P 1° =/ 2.810° ~ 28 GeV*

R=10% | =p u°=A"243 ~2.4GeV’ at A=0.1GeV
—p 1> =N 872 ~0.87GeV’

R(u) =  I=In(u®1A%)

close to conventional option 1 GeV2 !l

More realistic would be to change 0.1 GeV for 0.5 which causes increase of u



PROOF
Parameterization of o, In Regge kinematics
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Before integrating over m?, let us study singularities of the integrand



singularities of the integrand in p?
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It is convenient to perform integration over m? with using Cauchy theorem.
the integration contour has to be closed either up or down

/ I

Q@ 4 Imm?

Closing up involves Closing down involves
dealing with the cut of M dealing with the cut of the coupling



Approximation: M (s,.., kz) =M (S,--,M) ~M(s,.., ki)

‘ Assumption:; m2ﬂ<< ki

no cut in p2

Re m?

N
allows to close up the contour and deal with the pole only:



m*=-k{/pB

Uy = as(_ki //8)

CONTRADICTION between the assumption and calculation:

l

m’p <<k? m’°B+k?=0

assumption residue in the pole

Therefore the result & = & (—kf /,3) should be revised



we close the contour down to avoid dealing with singularities of M
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Contour for |

Re m?

?ﬂtour for ICUD

[Contour for I

Cauchy theorem:

l.=1+I1,+1_, =-2zires inthe pole atm*=0
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When additionally X~1 wpp B~1 w=p a (k?/B)~a (k)

IN(L2 I N)>> 7 = " = a (k] )

DGLAP region EGLAP parameterization

Therefore " ~ o (k?) onlywhen x~1and u*>>A%e”



Treatment of gluon ladders: vertical propagators are IR-divergent

First loop i
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identical IR -dependence

Second loop

DGLAP LL
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no IR -dependence || pgLAP-like term ’—tew term: IR -dependence

the same in higher loops



There are two different situations beyond Born approximation:

|m A ~ Flsmglet <= | Vvacuum numbers in t-channel

Refer as singletAg

Im A — FlNS | gls | glNS

—

non-vacuum numbers in t-channel

Refer as non-singlet AN S |




singlet and non-singlet have different IR-sensitive contributions:

Alper) =(Wﬁj M. (In(wB/k?),In(Q /k?))
AL = M (In(wB/k2),In(Q? /k2))

Perturbative contributions M are different for different amplitudes
and in different approaches but their arguments are always the same

M = ZCKI IN“(WB/k*)In'(Q* /k?) + non-logarithmic contributions

2 2 Do not mvolve
=—aff w-K powers
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Now let us integrate over ¢ neglecting ¢ -dependence in logs
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Application to DIS structure functions
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Factorization is only when Clﬂ W << kL



When it is accepted, we arrive at the standard expressions

k2 ,B k2

dk2 dIB f(pert)
k2

singlet  f = e 6 (Wﬁ ] £ (In(wB/k2), In(Q? / k2) ) D, (B, k%)

Non-singlet fs = j ( In(wg/k?),In(Q° /ka_))(DNS (B.k7)

Where the singlet and non-singlet initial parton densities are

K2 Iwp kf /wp
jdalst(wa,kj) D, = jdalmTNS(wa,kj)

k2 Jw k2 /w
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Transition to DGLAP: Collinear factorization
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Forinstance: @ = (T)(IB, ki)§(ki —,uz)
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{ Explicit dependence on L/ even after convoluting pert and non-pert

However, there is no ,U dependence in the case of DGLAP because DGLAP
collects leading logs of Q2 only, Sub-leading logs will be ,U -dependent

|nn(Q2 /,U12) = Inn(Q2 /luzz) + sub-leading



Comparison to standard DGLAP fits:

Altarell-Bal-Forte-Ridolfi, Leader-Sidorov-Stamenov,
Blumlein-Botcher, Hirai, ...

Typical expressions: [

parameters a,b,c,d > 0 }

09 =x*(1-x)"(Q+cx?)

[ singular féc}rj Eég\mar termsj

q)S —_ ﬁ—l+h

h>0

== singular factor a <1 for F, singlet

integrability |

h excludes singular factors for
CDNS ~ ﬁ all other structure functions



However in practice these requirements are violated

Reason why singular factors are necessary in DGLAP at small &

Most importanﬂ
at small x

: : k :
DGLAP does not include resummations of ~ IN"(1/X) , so without
singular factors X2 DGLAP expressions grow too slowly to match

experiment

Factors X 2 bring the appropriatek rowth at small x
They mimic resummation of  ~ In"(1/ X) and eventually, at x ->0

they change the classic DGLAP asymptotics _ { J
for the Regge one f ~x@ f exp \/In(ll X)

When the resummation is accounted for, they should be dropped,
which simplifies fits



Conclusion A (perturbative QCD)

Al. Strictly speaking, the QCD coupling in the Bethe-Salpeter equations for
the scattering amplitudes/parton densities/structure functions cannot
be factorized

A2. Factorization of the coupling is approximation and leads to converting

: eff
. INto o

A3. For the hard processes we eff __ 2 - 2
confirm known result: a; =a,(ki /1= )= a(kT)

A4. For the Regge processes and evolution equations

af =a (u®)+ %[arctan (ﬂbas (k? /,3))— arctan (”bas (ﬂz))]

S

and it explicitly depends on the IR cut-off/starting point of the Q2 —evolution
l.e. exhibits really non-trivial IR -dependence

A5. Alternatively, one can use Mellin transform



CONCLUSION B (Non-Perturbative part)

Integrability of forward Compton amplitudes imposes the following
restrictions on DGLAP fits for initial parton densities:

B1. Singular factors X—a can be used in fits for singlet F, only,
providing a<1

B2. Singular factors should not be used for all other structure functions.
Instead, one should use total resummation of

B3. Necessity to use singular factors is a good indication that important
logs of x are missing from theoretical expressions

In general, the use of collinear factorization brings dependence
factorization scale. However, DGLAP -expressions for structure
functions do not depend on it because DGLAP deals with leading
logs of Q2 and neglect sub-leading logs



