High-energy amplitudes in gauge theories in the next-to-leading order

G. A. Chirilli

LPT d’Orsay & CPHT

LPT Paris-Sud Orsay, March 04, 2010
DGLAP vs. BFKL.
Light-cone OPE versus OPE in color dipoles.
High-energy scattering and Wilson lines.
Factorization in rapidity: Feynman diagrams in a shock-wave background.
Leading order and NLO BK equation.
NLO BK kernel in $\mathcal{N} = 4$ SYM and in QCD.
NLO amplitude in $\mathcal{N}=4$.
Conclusions.
Outlook.
$x_B \sim \frac{Q^2}{s}$, \quad $\Delta x_\perp \sim \frac{1}{Q}$

Resolution of γ^* in transverse direction (Breit frame)

BFKL: Balitsky, Fadin, Kuraev, Lipatov

DGLAP: Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
BFKL: Leading Logarithmic Approximation

\[\alpha_s \ll 1 \quad (\alpha_s \ln s)^n \sim 1 \]

\[pQCD \text{ at LLA:} \quad A(s, t) \propto s^\Delta \]
BFKL: Leading Logarithmic Approximation \(\alpha_s << 1 \) \((\alpha_s \ln s)^n \sim 1\)

- pQCD at LLA: \(A(s, t) \propto s^\Delta \)
- Froissart-Martin theorem: \(A(s, t) \propto \ln^2 s \)
BFKL: Leading Logarithmic Approximation \(\alpha_s << 1 \quad (\alpha_s \ln s)^n \sim 1 \)

- pQCD at LLA: \(A(s, t) \propto s^\Delta \)
- Froissart-Martin theorem: \(A(s, t) \propto \ln^2 s \)

At very high energy recombination begins to compensate gluon production. Gluon density reaches a limit and does not grow anymore. So does the total DIS cross sections. **Unitarity is restored!**
BFKL: Leading Logarithmic Approximation

\[\alpha_s << 1 \quad (\alpha_s \ln s)^n \sim 1 \]

- **pQCD at LLA:** \(A(s, t) \propto s^\Delta \)
- **Froissart-Martin theorem:** \(A(s, t) \propto \ln^2 s \)

- At very high energy recombination begins to compensate gluon production. Gluon density reaches a limit and does not grow anymore. So does the total DIS cross sections. **Unitarity is restored!**

- In order to take into account recombination of gluons the evolution equation for the structure function has to be non-linear.
Incoherent Interactions

Bjorken Limit

\[Q^2 \rightarrow \infty, \ s \rightarrow \infty \]

\[x_B = \frac{Q^2}{s} \text{ fixed} \]

resum \[\alpha_s \ln \frac{Q^2}{\Lambda_{QCD}} \]
Incoherent Interactions

\[Q^2 \to \infty, \ s \to \infty \]
\[x_B = \frac{Q^2}{s} \text{ fixed} \]
\[\text{resum } \alpha_s \ln \frac{Q^2}{\Lambda_{QCD}} \]

Bjorken Limit

Coherent Interactions

\[Q^2 \text{ fixed, } s \to \infty \]
\[x_B = \frac{Q^2}{s} \to 0 \]
\[\text{resum } \alpha_s \ln \frac{1}{x_B} \]

Regge Limit
The DIS amplitude is given by the T product of two electromagnetic currents evaluated in the hadronic state

$$W^{\mu\nu} \propto \langle B | T \{ j^\mu (x) j^{\nu'} (y) | B \rangle$$

We study instead the $T \{ j^\mu (x) j^{\nu'} (y) \}$ in a generic external field.
Operator product expansion

The DIS amplitude is given by the T product of two electromagnetic currents evaluated in the hadronic state

\[W^{\mu\nu} \propto \langle B|T\{j^\mu(x)j^\nu(y)|B\rangle \]

We study instead the \(T\{j^\mu(x)j^\nu(y)\} \) in a generic external field.

Bjorken limit: OPE in light-ray operators

\[
T\{j_\mu(x)j_\nu(y)\} = \frac{(x - y)^\xi}{2\pi^2(x - y)^4} \left[1 + \frac{\alpha_s}{\pi} \left(\ln(x - y)^2 \mu^2 + C \right) \right] \bar{\psi}(x)\gamma_\mu\gamma_\xi\gamma_\nu[x, y]\psi(y) + O\left(\frac{1}{(x - y)^2}\right)
\]
Operator product expansion

The DIS amplitude is given by the T product of two electromagnetic currents evaluated in the hadronic state

\[
W^{\mu\nu} \propto \langle B \left| T\{j^\mu(x)j^\nu(y)\} \right| B \rangle
\]

We study instead the \(T\{j^\mu(x)j^\nu(y)\} \) in a generic external field.

Bjorken limit: OPE in light-ray operators

\[
T\{j_\mu(x)j_\nu(y)\} = \frac{(x-y)^\xi}{2\pi^2(x-y)^4} \left[1 + \frac{\alpha_s}{\pi} (\ln(x-y)^2 \mu^2 + C) \right] \bar{\psi}(x)\gamma_\mu \gamma_\xi \gamma_\nu [x,y] \psi(y) + O\left(\frac{1}{(x-y)^2}\right)
\]

High-energy (Regge) limit: OPE in Wilson lines operators

\[
T\{j^\mu(x)j^\nu(y)\} = \int d^2z_1 d^2z_2 \ I^{\text{LO}}_{\mu\nu}(z_1, z_2, x, y) \text{Tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^{\dagger \eta}\} + \ldots
\]
Light-cone expansion and DGLAP evolution in the NLO

[Diagram of a physical process involving quark lines and gluon exchanges]
Light-cone expansion and DGLAP evolution in the NLO

\[k_\perp^2 > \mu^2 \]

\[k_\perp^2 < \mu^2 \]

\(\mu^2 \) - factorization scale (normalization point)

\(k_\perp^2 > \mu^2 \) - coefficient functions

\(k_\perp^2 < \mu^2 \) - matrix elements of light-ray operators (normalized at \(\mu^2 \))
Light-cone expansion and DGLAP evolution in the NLO

μ^2 - factorization scale (normalization point)

$k_{\perp}^2 > \mu^2$ - coefficient functions

$k_{\perp}^2 < \mu^2$ - matrix elements of light-ray operators (normalized at μ^2)

OPE in light-ray operators

\[
T\{j_\mu(x)j_\nu(y)\} = \frac{(x-y)\xi}{2\pi^2(x-y)^4} \left[1 + \frac{\alpha_s}{\pi} \left(\ln(x-y)^2 \mu^2 + C \right) \right] \bar{\psi}(x)\gamma_\mu\gamma_\xi\gamma_\nu [x, y] \psi(y)
\]

$[x, y] \equiv Pe^{ig\int_0^1 du (x-y)^\mu A_\mu (ux+(1-u)y)}$ - gauge link
Light-cone expansion and DGLAP evolution in the NLO

\[k_\perp^2 > \mu^2 \]

\[k_\perp^2 < \mu^2 \]

\(\mu^2 \) - factorization scale (normalization point)

\(k_\perp^2 > \mu^2 \) - coefficient functions

\(k_\perp^2 < \mu^2 \) - matrix elements of light-ray operators (normalized at \(\mu^2 \))

Renorm-group equation for light-ray operators \(\Rightarrow \) DGLAP evolution of parton densities

\((x - y)^2 = 0 \)

\[\mu^2 \frac{d}{d\mu^2} \bar{\psi}(x)[x, y] \psi(y) = K_{\text{LO}} \bar{\psi}(x)[x, y] \psi(y) + \alpha_s K_{\text{NLO}} \bar{\psi}(x)[x, y] \psi(y) \]
High-energy expansion in color dipoles in the NLO
High-energy expansion in color dipoles in the NLO

\[\eta > Y \quad \text{and} \quad \eta < Y \]

G. A. Chirilli (LPT d’Orsay & CPHT)

High-energy evolution in gauge theories
High-energy expansion in color dipoles in the NLO

\[Y > \eta \]

\[Y < \eta \]

\(\eta \) - rapidity factorization scale

Rapidity \(Y > \eta \) - coefficient function ("impact factor")

Rapidity \(Y < \eta \) - matrix elements of (light-like) Wilson lines with rapidity divergence cut by \(\eta \)

\[
U_{x}^{\eta} = \text{Pexp} \left[ig \int_{-\infty}^{\infty} dx^{+} A_{+}^{\eta}(x_{+}, x_{\perp}) \right]
\]

\[
A^{\eta}_{\mu}(x) = \int \frac{d^{4}k}{(2\pi)^{4}} \theta(e^{\eta} - |\alpha_k|) e^{-ik \cdot x} A_{\mu}(k)
\]
The high-energy operator expansion is

\[T\{j_\mu(x)j_\nu(y)\} = \int d^2z_1 d^2z_2 \, I^{\text{LO}}_{\mu\nu}(z_1, z_2, x, y) \text{Tr}\{\hat{U}_z^\eta \hat{U}^\dagger_z^\eta\} \]

\[+ \int d^2z_1 d^2z_2 d^2z_3 \, I^{\text{NLO}}_{\mu\nu}(z_1, z_2, z_3, x, y)[\text{tr}\{\hat{U}_z^\eta \hat{U}^\dagger_{z_3}^\eta\}\text{tr}\{\hat{U}_z^\eta \hat{U}^\dagger_{z_2}^\eta\} - N_c\text{tr}\{\hat{U}_z^\eta \hat{U}^\dagger_{z_1}^\eta\}] \]

In the leading order the impact factor is Möbius invariant.

In the NLO one should also expect conf. invariance since \(I^{\text{NLO}}_{\mu\nu} \) is given by tree diagrams.
High-energy expansion in color dipoles in the NLO

\[d \frac{d}{d\eta} \text{tr}\{U_x^n U_y^{+n}\} = \frac{\alpha_s}{2\pi^2} \int d^2z \frac{(x - y)^2}{(x - z)^2 (y - z)^2} [\text{tr}\{U_x^n U_y^{+n}\} \text{tr}\{U_x^n U_y^{+n}\}] - N_c \text{tr}\{U_x^n U_y^{+n}\} + \alpha_s K_{\text{NLO}} \text{tr}\{U_x^n U_y^{+n}\} + O(\alpha_s^2) \]

\[K_{\text{NLO}} = ? \]

(Linear part of \(K_{\text{NLO}} = K_{\text{NLO BFKL}} \))
High-energy expansion in color dipoles in the NLO

\[A(s) = \int \frac{d^2 k_\perp}{4\pi^2} I^A(k_\perp) \langle B | \text{Tr} \{ U(k_\perp) U^\dagger(-k_\perp) \} | B \rangle + \ldots \]

\[U(x_\perp) = P e^{ig \int_{-\infty}^{\infty} du \ n^\mu A_\mu(un+x_\perp)} \quad \text{Wilson line} \]
Consider a quark propagating at high energy in an external field ⇒ quark propagator reduces to the Wilson line collinear to quark-velocity.
Consider a quark propagating at high energy in an external field \Rightarrow quark propagator reduces to the Wilson line collinear to quark-velocity
Consider a quark propagating at high energy in an external field ⇒ quark propagator reduces to the Wilson line collinear to quark-velocity

DIS: the virtual photon splits in a quark anti-quark pair which interacts with the target ⇒
Consider a quark propagating at high energy in an external field ⇒ quark propagator reduces to the Wilson line collinear to quark-velocity.

DIS: the virtual photon splits in a quark anti-quark pair which interacts with the target ⇒

DIS at high energy: eikonal approximation (neglect recoil of gluons)
DIS at high energy

- Consider a quark propagating at high energy in an external field ⇒ quark propagator reduces to the Wilson line collinear to quark-velocity

- DIS: the virtual photon splits in a quark anti-quark pair which interacts with the target ⇒

- DIS at high energy: eikonal approximation (neglect recoil of gluons)
Consider a quark propagating at high energy in an external field ⇒ quark propagator reduces to the Wilson line collinear to quark-velocity

DIS: the virtual photon splits in a quark anti-quark pair which interacts with the target ⇒

DIS at high energy: eikonal approximation (neglect recoil of gluons)

\[
A(s) = \int \frac{d^2 k_\perp}{4\pi^2} I^A(k_\perp) \langle B | \text{Tr}\{U(k_\perp)U^\dagger(-k_\perp)\}|B\rangle + \ldots
\]
\[p_\mu p_1^\mu \equiv p_1 \cdot = \sqrt{s/2} \ p^- \]
\[p_\mu p_2^\mu \equiv p_* = \sqrt{s/2} \ p^+ \]
Spectator frame

\[p_\mu p_1^\mu \equiv p_1^\bullet = \sqrt{s/2} \ p^- \quad \quad p_\mu p_2^\mu \equiv p^\ast = \sqrt{s/2} \ p^+ \]

Under a Lorentz boost in the longitudinal \(z \) direction the components \(p^\mu \) get rescaled

\[p^\mu = \alpha p_1^\mu + \beta p_2^\mu + p_\perp \rightarrow \lambda \alpha p_1^\mu + \frac{1}{\lambda} \beta p_2^\mu + p_\perp \]
Spectator frame

\[p_\mu p_1^\mu \equiv p_1 \cdot = \sqrt{s/2} p^- \quad p_\mu p_2^\mu \equiv p_\star = \sqrt{s/2} p^+ \]

Under a Lorentz boost in the longitudinal \(z \) direction the componets \(p^\mu \) get rescaled

\[p^\mu = \alpha p_1^\mu + \beta p_2^\mu + p^\perp \rightarrow \lambda \alpha p_1^\mu + \frac{1}{\lambda} \beta p_2^\mu + p^\perp \]

Rescaling of the field \(A^\mu(x) \)

\[
\begin{align*}
B_\bullet(x_\bullet, x_\star, x_\perp) &= \lambda A_\bullet\left(\frac{x_\bullet}{\lambda}, x_\star \lambda, x_\perp\right) \\
B_\star(x_\bullet, x_\star, x_\perp) &= \frac{1}{\lambda} A_\star\left(\frac{x_\bullet}{\lambda}, x_\star \lambda, x_\perp\right) \\
B_\perp(x_\bullet, x_\star, x_\perp) &= A_\perp\left(\frac{x_\bullet}{\lambda}, x_\star \lambda, x_\perp\right)
\end{align*}
\]
Spectator frame

\[p_\mu p^\mu_1 \equiv p_1 \cdot = \sqrt{s/2} p^- \quad p_\mu p^\mu_2 \equiv p_* = \sqrt{s/2} p^+ \]

Under a Lorentz boost in the longitudinal \(z \) direction the components \(p^\mu \) get rescaled

\[p^\mu = \alpha p^\mu_1 + \beta p^\mu_2 + p_\perp \rightarrow \lambda \alpha p^\mu_1 + \frac{1}{\lambda} \beta p^\mu_2 + p_\perp \]

Rescaling of the field \(A^\mu(x) \)

\[
\begin{align*}
B_\bullet(x_\bullet, x_*, x_\perp) &= \lambda A_\bullet \left(\frac{x_\bullet}{\lambda}, x_*, \lambda, x_\perp \right) \\
B_\ast(x_\bullet, x_*, x_\perp) &= \frac{1}{\lambda} A_\ast \left(\frac{x_\bullet}{\lambda}, x_*, \lambda, x_\perp \right) \\
B_\perp(x_\bullet, x_*, x_\perp) &= A_\perp \left(\frac{x_\bullet}{\lambda}, x_*, \lambda, x_\perp \right)
\end{align*}
\]

Rescaling of the field strength \(F^{\mu\nu}(x) \)

\[
\begin{align*}
G_\bullet(x_\bullet, x_*, x_\perp) &= \lambda F_\bullet \left(\frac{x_\bullet}{\lambda}, x_*, \lambda, x_\perp \right) \rightarrow \delta(x_*) G_i(x_\perp) \\
G_\ast(x_\bullet, x_*, x_\perp) &= \frac{1}{\lambda} F_\ast \left(\frac{x_\bullet}{\lambda}, x_*, \lambda, x_\perp \right) \rightarrow 0 \\
G_\ast(x_\bullet, x_*, x_\perp) &= F_\ast \left(\frac{x_\bullet}{\lambda}, x_*, \lambda, x_\perp \right) \rightarrow 0 \\
G_{ik}(x_\bullet, x_*, x_\perp) &= F_{ik} \left(\frac{x_\bullet}{\lambda}, x_*, \lambda, x_\perp \right) \rightarrow 0
\end{align*}
\]
Propagation in the shock wave: Wilson line (Spectator frame)
Propagation in the shock wave: Wilson line (Spectator frame)
Propagation in the shock wave: Wilson line (Spectator frame)
Each path is weighted with the gauge factor $P e^{i g \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.
Each path is weighted with the gauge factor $Pe^{ig \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.
Each path is weighted with the gauge factor $P e^{ig \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.
Each path is weighted with the gauge factor $Pe^{ig \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.
Each path is weighted with the gauge factor $P e^{i g \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

$$U_z = [\infty p_1 + z_\perp, -\infty p_1 + z_\perp]$$

$$[x, y] = Pe^{ig \int_0^1 du (x-y)^\mu A_\mu (ux+(1-u)y)}$$

$$p^\mu = \alpha p_1^\mu + \beta p_2^\mu + p_\perp^\mu$$
Each path is weighted with the gauge factor $P e^{ig \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction ⇒ we can replace the gauge factor along the actual path with the one along the straight-line path.
Each path is weighted with the gauge factor $P e^{ig \int dx_{\mu} A_{\mu}}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.
\[
T\{\hat{j}_\mu(x)\hat{j}_\nu(y)\} = \int d^2z_1 d^2z_2 \, I_{\mu\nu}^{\text{LO}}(z_1, z_2) \text{Tr}\{\hat{U}^\eta_{z_1} \hat{U}^{\dagger \eta}_{z_2}\}
\]
\[
+ \int d^2z_1 d^2z_2 d^2z_3 \, I_{\mu\nu}^{\text{NLO}}(z_1, z_2, z_3) \left[\text{tr}\{\hat{U}^\eta_{z_1} \hat{U}^{\dagger \eta}_{z_3}\} \text{tr}\{\hat{U}^\eta_{z_3} \hat{U}^{\dagger \eta}_{z_2}\} - N_c \text{tr}\{\hat{U}^\eta_{z_1} \hat{U}^{\dagger \eta}_{z_2}\}\right]
\]
\[T\{\hat{j}_\mu(x)\hat{j}_\nu(y)\} = \int d^2 z_1 d^2 z_2 I_{\mu\nu}^{LO}(z_1, z_2) \text{Tr}\{\hat{U}_{z_1} \hat{U}_{z_2}^{\dagger}\} \]

\[+ \int d^2 z_1 d^2 z_2 d^2 z_3 I_{\mu\nu}^{NLO}(z_1, z_2, z_3) \left[\text{tr}\{\hat{U}_{z_1} \hat{U}_{z_3}^{\dagger}\} \text{tr}\{\hat{U}_{z_2} \hat{U}_{z_3}^{\dagger}\} - N_c \text{tr}\{\hat{U}_{z_1} \hat{U}_{z_2}^{\dagger}\} \right] \]

LO Impact Factor diagram: \(I^{LO} \)

NLO Impact Factor diagrams: \(I^{NLO} \)
Conformal vectors:

\[
\kappa = \frac{\sqrt{s}}{2x_*} \left(\frac{p_1}{s} - x^2 p_2 + x_\perp \right) - \frac{\sqrt{s}}{2y_*} \left(\frac{p_1}{s} - y^2 p_2 + y_\perp \right)
\]

\[
\kappa' = \frac{\sqrt{s}}{2x'_*} \left(\frac{p_1}{s} - x'^2 p_2 + x'_\perp \right) - \frac{\sqrt{s}}{2y'_*} \left(\frac{p_1}{s} - y'^2 p_2 + y'_\perp \right)
\]

\[
\zeta_1 = \sqrt{s} \left(\frac{p_1}{s} + z_1^2 p_2 + z_1\perp \right), \quad \zeta_2 = \sqrt{s} \left(\frac{p_1}{s} + z_2^2 p_2 + z_2\perp \right)
\]

Here \(x^2 = -x_\perp^2, \quad x'^2 = -x'_\perp^2 \) (similarly for \(y \))

\[
I^{LO} \propto \frac{2}{\pi^6} \int d^2z_1\perp d^2z_2\perp \text{tr} \{ U_{z_1\perp} U_{z_2\perp}^\dagger \} \frac{z_{12\perp}^2}{x_*^2 y_*^2 (\kappa \cdot \zeta_1) (\kappa \cdot \zeta_2)^3}
\]

\[
\times \frac{\partial^2}{\partial x^{\mu} \partial y^{\nu}} \left[-2(\kappa \cdot \zeta_1)(\kappa \cdot \zeta_2) + \kappa^2 (\zeta_1 \cdot \zeta_2) \right]
\]
\[Z_3 \equiv \frac{(x-z_3)^2}{x^+} - \frac{(y-z_3)^2}{y^+} \]

\[I^\text{NLO}_{\mu\nu}(x, y; z_1, z_2, z_3; \eta) = - I^\text{LO}_{\mu\nu} \times \frac{\alpha_s}{2\pi} \frac{z_{13}^2}{z_{12}^2 z_{23}^2} \ln \frac{\sigma s}{4} Z_3 + \text{conf.} \]

The NLO impact factor is not Möbius invariant \(\Rightarrow \) the color dipole with the cutoff \(\eta = \ln \sigma \) is not invariant.
The NLO impact factor is not Möbius invariant ⇒ the color dipole with the cutoff $\eta = \ln \sigma$ is not invariant.

However, if we define a composite operator (a - analog of μ^{-2} for usual OPE)

$$ \left[\text{Tr}\{\hat{U}\eta_{z_1} \hat{U}^\dagger\eta_{z_2} \} \right]^{\text{conf}} = \text{Tr}\{\hat{U}\eta_{z_1} \hat{U}^\dagger\eta_{z_2} \} $$

$$ + \frac{\alpha_s}{4\pi} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\frac{1}{N_c} \text{tr}\{\hat{U}\eta_{z_1} \hat{U}^\dagger\eta_{z_3} \} \text{tr}\{\hat{U}\eta_{z_3} \hat{U}^\dagger\eta_{z_2} \} - \text{Tr}\{\hat{U}\eta_{z_1} \hat{U}^\dagger\eta_{z_2} \} \right] \ln \frac{az_{12}^2}{z_{13}^2 z_{23}^2} + O(\alpha_s^2) $$

the impact factor becomes conformal in the NLO.
$T\{\hat{j}_\mu(x)\hat{j}_\nu(y)\} = \int d^2z_1 d^2z_2 \ I_{\mu\nu}^{\text{LO}}(z_1, z_2, x, y) \text{tr}[\{\hat{U}_{z_1}^\eta \hat{U}^\dagger_{z_2}^\eta\}]_{\text{conf}}$

$+ \int d^2z_1 d^2z_2 d^2z_3 \ I_{\mu\nu}^{\text{NLO}}(z_1, z_2, z_3, x, y) \left[\frac{1}{N_c} \text{tr}\{\hat{U}_{z_1}^\eta \hat{U}^\dagger_{z_3}^\eta\} \text{tr}\{\hat{U}_{z_3}^\eta \hat{U}_z^\dagger_{z_2}^\eta\} - \text{tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^\dagger\} \right]$
Operator expansion in conformal dipoles

\[T\{\hat{j}_\mu(x)\hat{j}_\nu(y)\} = \int d^2z_1 d^2z_2 \ I_{\mu\nu}^{LO}(z_1, z_2, x, y) \text{tr}[\{\hat{U}^\eta_{z_1} \hat{U}^{\dagger \eta}_{z_2}\}]^{\text{conf}} \]

\[+ \int d^2z_1 d^2z_2 d^2z_3 \ I_{\mu\nu}^{NLO}(z_1, z_2, z_3, x, y) \left[\frac{1}{N_c} \text{tr}\{\hat{U}^\eta_{z_1} \hat{U}^{\dagger \eta}_{z_3}\} \text{tr}\{\hat{U}^\eta_{z_3} \hat{U}^{\dagger \eta}_{z_2}\} - \text{tr}\{\hat{U}^\eta_{z_1} \hat{U}^{\dagger \eta}_{z_2}\} \right] \]

\[I_{\mu\nu}^{NLO} = - I_{\mu\nu}^{LO} \frac{\alpha_s N_c}{4\pi} \int dz_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{12}^2 e^{2\eta} a_s^2}{z_{13}^2 z_{23}^2} Z_3^2 + \text{conf.} \]

The new NLO impact factor is conformally invariant.
Operator expansion in conformal dipoles

\[
T\{j_\mu(x)\hat{j}_\nu(y)\} = \int d^2z_1 d^2z_2 \, I^{LO}_{\mu\nu}(z_1, z_2, x, y) \text{tr}\{\hat{U}_{\eta}^{z_1} \hat{U}^\dagger_{\eta}^{z_2}\}^{\text{conf}}
+ \int d^2z_1 d^2z_2 d^2z_3 \, I^{NLO}_{\mu\nu}(z_1, z_2, z_3, x, y) \left[\frac{1}{N_c} \text{tr}\{\hat{U}_{\eta}^{z_1} \hat{U}^\dagger_{\eta}^{z_3}\} \text{tr}\{\hat{U}_{\eta}^{z_3} \hat{U}^\dagger_{\eta}^{z_2}\} - \text{tr}\{\hat{U}_{\eta}^{z_1} \hat{U}^\dagger_{\eta}^{z_2}\}\right]
\]

\[
I^{NLO}_{\mu\nu} = - I^{LO}_{\mu\nu} \frac{\alpha_s N_c}{4\pi} \int dz_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{12}^2 e^{2\eta} a^2}{z_{13}^2 z_{23}^2} \, Z_3^2 + \text{conf}.
\]

The new NLO impact factor is conformally invariant.

In conformal \(\mathcal{N} = 4\) SYM theory (where the \(\beta\)-function vanishes) one can construct the composite conformal dipole operator order by order in perturbation theory.
Operator expansion in conformal dipoles

\[T\{\hat{j}_\mu(x)\hat{j}_\nu(y)\} = \int d^2z_1 d^2z_2 \ I_{\mu\nu}^{\text{LO}}(z_1, z_2, x, y) \text{tr}[\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^{\dagger\eta}\}]^{\text{conf}} \]

\[+ \int d^2z_1 d^2z_2 d^2z_3 \ I_{\mu\nu}^{\text{NLO}}(z_1, z_2, z_3, x, y) [\frac{1}{N_c} \text{tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_3}^{\dagger\eta}\} \text{tr}\{\hat{U}_{z_3}^\eta \hat{U}_{z_2}^{\dagger\eta}\} - \text{tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^{\dagger\eta}\}] \]

\[I_{\mu\nu}^{\text{NLO}} = - I_{\mu\nu}^{\text{LO}} \frac{\alpha_s N_c}{4\pi} \int dz_3 \frac{z_{12}^2}{z_{13}^2} \frac{z_{23}^2}{z_{23}^2} \ln \frac{z_{12}^2 e^{2\eta} a_s^2}{z_{13}^2 z_{23}^2} Z_3^2 + \text{conf}. \]

The new NLO impact factor is conformally invariant.

In conformal $\mathcal{N} = 4$ SYM theory (where the β-function vanishes) one can construct the composite conformal dipole operator order by order in perturbation theory.

Analogy:

When the UV cutoff does not respect the symmetry of a local operator, the composite local renormalized operator must be corrected by finite counterterms order by order in perturbation theory.
Regularization of the rapidity divergence

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

\[\int_0^\infty \frac{d\alpha}{\alpha} = \int_{-\infty}^\infty d\eta = \infty \]
Regularization of the rapidity divergence

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

\[\int_0^\infty \frac{d\alpha}{\alpha} = \int_{-\infty}^\infty d\eta = \infty \]

Regularization by: slope

\[U^n(x_\perp) = \text{Pexp}\left\{ ig \int_{-\infty}^{\infty} du \ n_\mu \ A^\mu (un + x_\perp) \right\} \]

\[n^\mu = p_1^\mu + e^{-2\eta} p_2^\mu \]
Regularization of the rapidity divergence

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

\[\int_{0}^{\infty} \frac{d\alpha}{\alpha} = \int_{-\infty}^{\infty} d\eta = \infty \]

Regularization by: slope

\[U_\eta^{\mu}(x_\perp) = \text{Pexp}\left\{ ig \int_{-\infty}^{\infty} du \, n_\mu \, A_\mu^{\eta}(un + x_\perp) \right\} \quad n^{\mu} = p_1^{\mu} + e^{-2\eta} p_2^{\mu} \]

Regularization by: Rigid cut-off (used in NLO)

\[U_x^{\eta} = \text{Pexp}\left[ig \int_{-\infty}^{\infty} du \, p_1^{\mu} A_\mu^{\eta}(up_1 + x_\perp) \right] \]

\[A_\mu^{\eta}(x) = \int \frac{d^4k}{(2\pi)^4} \frac{\theta(e^{\eta} - |\alpha_k|) e^{-ik \cdot x} A_\mu(k)}{e_\eta - |\alpha_k|} \]

\[k^{\mu} = \alpha_k p_1^{\mu} + \beta_k p_2^{\mu} + k_\perp^{\mu} \]
\[
\frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger}\} \Rightarrow \frac{d}{d\eta} \langle \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger}\} \rangle
\]
\[\frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger}\} \Rightarrow \frac{d}{d\eta} \langle \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger}\rangle \]

To get the evolution equation, consider the dipole with the rapidities up to \(\eta_1 \) and integrate over the gluons with rapidity \(\eta_1 > \eta > \eta_2 \). This integral gives the kernel of the evolution equation (multiplied by the dipole(s) with rapidity up to \(\eta_2 \)).

In the frame \(|| \) to \(\eta_1 \) the gluons with \(\eta < \eta_1 \) are seen as pancake.

Particles with different rapidity perceive each other as Wilson lines.
Leading order: BK equation

\[
\frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} = K_{LO} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \ldots \ \Rightarrow
\]

\[
\frac{d}{d\eta} \langle \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} \rangle_{\text{shockwave}} = \langle K_{LO} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} \rangle_{\text{shockwave}}
\]
Leading order: BK equation

\[\frac{d}{d\eta} \mathrm{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} = K_{\mathrm{LO}} \mathrm{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \ldots \Rightarrow \]

\[\frac{d}{d\eta} \langle \mathrm{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} \rangle_{\text{shockwave}} = \langle K_{\mathrm{LO}} \mathrm{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} \rangle_{\text{shockwave}} \]

\[x_\bullet = \sqrt{\frac{s}{2}} x^- \]
\[x_* = \sqrt{\frac{s}{2}} x^+ \]
Non linear evolution equation: BK equation

\[U_{ab}^{z} = \text{Tr}\{ t^a U_z t^b U_z^\dagger \} \Rightarrow (U_x U_y^\dagger)^{\eta_1} \rightarrow (U_x U_y^\dagger)^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_y^\dagger U_z U_y^\dagger)^{\eta_2} \]
Non linear evolution equation: BK equation

\[U_{z}^{ab} = \text{Tr}\{t^a U_z t^b U_z^\dagger\} \Rightarrow (U_x U_y^\dagger)^{\eta_1} \to (U_x U_y^\dagger)^{\eta_2} + \alpha_s(\eta_1 - \eta_2)(U_x U_z^\dagger U_z U_y^\dagger)^{\eta_2} \]

\[\hat{U}(x, y) \equiv 1 - \frac{1}{N_c} \text{Tr}\{\hat{U}(x_\perp)\hat{U}^\dagger(y_\perp)\} \]

\[\frac{d}{d\eta} \hat{U}(x, y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z}{(x - z)^2(y - z)^2} \left\{ \hat{U}(x, z) + \hat{U}(z, y) - \hat{U}(x, y) - \hat{U}(x, z)\hat{U}(z, y) \right\} \]

Non linear evolution equation: BK equation

\[U_{z}^{ab} = \text{Tr}\{t^{a}U_{z}t^{b}U_{z}^{\dagger}\} \Rightarrow (U_{x}U_{y}^{\dagger})^{\eta_{1}} \rightarrow (U_{x}U_{y}^{\dagger})^{\eta_{1}} + \alpha_{s}(\eta_{1} - \eta_{2})(U_{x}U_{z}^{\dagger}U_{z}U_{y}^{\dagger})^{\eta_{2}} \]

\[\hat{U}(x, y) \equiv 1 - \frac{1}{N_{c}}\text{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\} \]

\[
\frac{d\hat{U}(x, y)}{d\eta} = \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int \frac{d^{2}z}{(x - z)^2(y - z)^2} \left\{ \hat{U}(x, z) + \hat{U}(z, y) - \hat{U}(x, y) - \hat{U}(x, z)\hat{U}(z, y) \right\}
\]

LLA for DIS in pQCD \(\Rightarrow\) BFKL
(\text{LLA: } \alpha_{s} \ll 1, \alpha_{s}\eta \sim 1)
Non linear evolution equation: BK equation

\[U^{ab}_{z} = \text{Tr}\{t^{a}U_{z}^{\dagger}t^{b}\} \Rightarrow (U_{x}U_{y}^{\dagger})^{\eta_{1}} \rightarrow (U_{x}U_{y}^{\dagger})^{\eta_{1}} + \alpha_{s}(\eta_{1} - \eta_{2})(U_{x}U_{z}^{\dagger}U_{z}U_{y}^{\dagger})^{\eta_{2}} \]

\[\hat{U}(x, y) \equiv 1 - \frac{1}{N_{c}}\text{Tr}\{\hat{U}(x_{\perp})\hat{U}^{\dagger}(y_{\perp})\} \]

\[
\frac{d}{d\eta} \hat{U}(x, y) = \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int \frac{d^{2}z (x - y)^{2}}{(x - z)^{2}(y - z)^{2}} \left\{ \hat{U}(x, z) + \hat{U}(z, y) - \hat{U}(x, y) - \hat{U}(x, z)\hat{U}(z, y) \right\}
\]

Alternative approach: JIMWLK (1997-2000)

LLA for DIS in pQCD \(\Rightarrow\) BFKL

LLA for DIS in sQCD \(\Rightarrow\) BK eqn

(LLA: \(\alpha_{s} \ll 1, \alpha_{s}\eta \sim 1\))

(LLA: \(\alpha_{s} \ll 1, \alpha_{s}\eta \sim 1, \alpha_{s}^{2}A^{1/3} \sim 1\))

(s for semiclassical)
Non-linear evolution equation in the NLO

\[
\frac{d}{d\eta} Tr\{U_x U_y^\dagger\} = \\
\int \frac{d^2 z}{2\pi^2} \left(\alpha_s \frac{(x - y)^2}{(x - z)^2(z - y)^2} + \alpha_s^2 K_{NLO}(x, y, z) \right) [Tr\{U_x U_y^\dagger\} Tr\{U_z U_y^\dagger\} - N_c Tr\{U_x U_y^\dagger\}] + \\
\alpha_s^2 \int d^2 z d^2 z' \left(K_4(x, y, z, z')\{U_x, U_z^\dagger, U_y, U_y^\dagger\} + K_6(x, y, z, z')\{U_x, U_z^\dagger, U_z^\dagger, U_y, U_y^\dagger\} \right)
\]

\(K_{NLO} \) is the next-to-leading order correction to the dipole kernel and \(K_4 \) and \(K_6 \) are the coefficients in front of the (tree) four- and six-Wilson line operators with arbitrary white arrangements of color indices.
Definition of the NLO kernel

The NLO kernel is obtained in the same way as the NLO DGLAP kernel:
1. Write down the general form of the operator equation

\[
\frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} = \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \alpha_s^2 K_{\text{NLO}} \left[\text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger \ldots\} \right] + O(\alpha_s^3)
\]
Definition of the NLO kernel

The NLO kernel is obtained in the same way as the NLO DGLAP kernel:
1. Write down the general form of the operator equation

\[
\frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} = \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \alpha_s^2 K_{\text{NLO}} \left[\text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger \ldots \} \right] + O(\alpha_s^3)
\]

\[
\alpha_s^2 K_{\text{NLO}} \left[\text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger \ldots \} \right] = \frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} - \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + O(\alpha_s^3)
\]
Definition of the NLO kernel

The NLO kernel is obtained in the same way as the NLO DGLAP kernel:

1. Write down the general form of the operator equation

\[
\frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\} = \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\} + \alpha_s^2 K_{\text{NLO}} \left[\text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\} + \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\ldots\} \right] + O(\alpha_s^3)
\]

\[
\alpha_s^2 K_{\text{NLO}} \left[\text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\} + \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\ldots\} \right] = \frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\} - \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\} + O(\alpha_s^3)
\]

2. Calculate the “matrix element” of the r.h.s. in the shock-wave background

\[
\langle \alpha_s^2 K_{\text{NLO}} \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\}\rangle = \frac{d}{d\eta} \langle \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\}\rangle - \langle \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}^\dagger_y\}\rangle + O(\alpha_s^3)
\]
The NLO kernel is obtained in the same way as the NLO DGLAP kernel:

1. Write down the general form of the operator equation

\[
\frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} = \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \alpha_s^2 K_{\text{NLO}} \left[\text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\ldots\} \right] + O(\alpha_s^3)
\]

\[
\alpha_s^2 K_{\text{NLO}} \left[\text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\ldots\} \right] = \frac{d}{d\eta} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} - \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} + O(\alpha_s^3)
\]

2. Calculate the “matrix element” of the r.h.s. in the shock-wave background

\[
\langle \alpha_s^2 K_{\text{NLO}} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} \rangle = \frac{d}{d\eta} \langle \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} \rangle - \langle \alpha_s K_{\text{LO}} \text{Tr}\{\hat{U}_x \hat{U}_y^\dagger\} \rangle + O(\alpha_s^3)
\]

3. Subtract the LO contribution

\[
\Rightarrow \quad \left[\frac{1}{v} \right]_+ \text{ prescription in the integrals over Feynman parameter } v
\]

Typical integral

\[
\int_0^1 dv \frac{1}{(k-p)^2_\perp v + p^2_\perp (1-v)} \left[\frac{1}{v} \right]_+ = \frac{1}{p^2_\perp} \ln \frac{(k-p)^2_\perp}{p^2_\perp}
\]
Diagrams of the NLO gluon contribution

Add an extra gluon to the leading order diagrams

(a) (b) (c) (d)
Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction
Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction
Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction

(XXXI) (XXXII) (XXXIII) (XXXIV)
Diagrams of the NLO gluon contribution

"Running coupling" diagrams
Diagrams of the NLO gluon contribution

1 → 2 dipole transition diagrams

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

G. A. Chirilli (LPT d’Orsay & CPHT)
High-energy evolution in gauge theories
LPT March 04, 2010 25 / 37
\[
\frac{d}{d\eta} \text{Tr}\{U_x U_y^\dagger\} = \frac{\alpha_s}{2\pi^2} \int d^2z \left(\text{Tr}\{U_x U_z^\dagger\} \text{Tr}\{U_z U_y^\dagger\} - N_c \text{Tr}\{U_x U_y^\dagger\} \right)
\times \left\{ \frac{(x - y)^2}{X^2 Y^2} \left[1 + \frac{\alpha_s N_c}{4\pi} \left(\frac{11}{3} \ln(x - y)^2 \mu^2 + \frac{67}{9} - \frac{\pi^2}{3} \right) \right] - \frac{11}{3} \frac{\alpha_s N_c}{4\pi} \frac{X^2 - Y^2}{X^2 Y^2} \ln \frac{X^2}{Y^2} \right. \\
- \left. \frac{\alpha_s N_c}{2\pi} \frac{(x - y)^2}{X^2 Y^2} \ln \frac{X^2}{(x - y)^2} \ln \frac{Y^2}{(x - y)^2} \right\}
\]

\[
\frac{\alpha_s}{4\pi^2} \int d^2z' \left\{ \text{Tr}\{U_x U_z^\dagger\} \text{Tr}\{U_z U_y^\dagger\} \{U_{z'} U_y^\dagger\} - \text{Tr}\{U_x U_z^\dagger U_{z'} U_y^\dagger U_{z'} U_z^\dagger\} \right.
\]
\[
- (z' \to z) \left[\frac{1}{(z - z')^4} \left[-2 + \frac{X'^2 Y^2 + Y'^2 X^2 - 4(x - y)^2(z - z')^2}{2(X'^2 Y^2 - Y'^2 X^2)} \ln \frac{X'^2 Y^2}{Y'^2 X^2} \right] \\
+ \left[\text{Tr}\{U_x U_z^\dagger\} \text{Tr}\{U_{z'} U_y^\dagger\} \{U_{z'} U_y^\dagger\} - \text{Tr}\{U_x U_{z'} U_y^\dagger U_z U_{z'} U_y^\dagger\} \right. \left(z' \to z \right) \right]
\]
\[
\times \left[\frac{(x - y)^4}{X^2 Y'^2 (X^2 Y'^2 - X'^2 Y^2)} + \frac{(x - y)^2}{(z - z')^2 X^2 Y'^2} \ln \frac{X^2 Y'^2}{X'^2 Y^2} \right] \right\}
\]

Our result agrees with NLO BFKL

(Comparing the eigenvalue of the forward kernel)

It respects unitarity
\[
\frac{d}{d\eta} \text{Tr}\{U_x U_y^\dagger\} = \frac{\alpha_s}{2\pi^2} \int d^2z \left(\text{Tr}\{U_x U_z^\dagger\} \text{Tr}\{U_z U_y^\dagger\} - N_c \text{Tr}\{U_x U_y^\dagger\} \right) \\
\times \left\{ \frac{(x - y)^2}{X^2 Y^2} \left[1 + \frac{\alpha_s N_c}{4\pi} \left(\frac{11}{3} \ln(x - y)^2 \mu^2 + \frac{67}{9} - \frac{\pi^2}{3} \right) \right] \\
- \frac{11}{3} \frac{\alpha_s N_c}{4\pi} \frac{X^2 - Y^2}{X^2 Y^2} \ln \frac{X^2}{Y^2} - \frac{\alpha_s N_c}{2\pi} \frac{(x - y)^2}{X^2 Y^2} \ln \frac{X^2}{(x - y)^2} \ln \frac{Y^2}{(x - y)^2} \right\} \\
+ \frac{\alpha_s}{4\pi^2} \int d^2z' \left\{ \text{Tr}\{U_x U_z^\dagger\} \text{Tr}\{U_z U_z'^\dagger\} \{U_z' U_y^\dagger\} - \text{Tr}\{U_x U_z'^\dagger U_z'^\dagger U_y^\dagger U_z U_z'^\dagger\} \right\} \\
- (z' \rightarrow z) \left\{ \frac{1}{(z - z')^4} \left[-2 + \frac{X'^2 Y^2 + Y'^2 X^2 - 4(x - y)^2(z - z')^2}{2(X'^2 Y^2 - Y'^2 X^2)} \ln \frac{X'^2 Y^2}{Y'^2 X^2} \right] \\
+ \text{Tr}\{U_x U_z^\dagger\} \text{Tr}\{U_z U_z'^\dagger\} \{U_z' U_y^\dagger\} - \text{Tr}\{U_x U_z'^\dagger U_z'^\dagger U_y^\dagger U_z U_z'^\dagger\} - (z' \rightarrow z) \right\} \\
\times \left[\frac{(x - y)^4}{X^2 Y'^2 (X'^2 Y^2 - X'^2 Y^2)} + \frac{(x - y)^2}{(z - z')^2 X^2 Y'^2} \right] \ln \frac{X^2 Y'^2}{X'^2 Y^2} \right\} \\
\]

NLO kernel = Running coupling terms + Non-conformal term + Conformal term
${\cal N} = 4$ SYM diagrams (scalar and gluino loops)
Evolution equation for color dipoles in $\mathcal{N} = 4$

(I. Balitsky and G.A.C. 2009)

\[
\frac{d}{d\eta} \text{Tr}\{\hat{U}^\eta_{z_1} \hat{U}^\dagger_{z_2}\} = \frac{\alpha_s}{\pi^2} \int d^2z_3 \frac{z_{12}^2}{z_{13}z_{23}} \left\{ 1 - \frac{\alpha_sN_c}{4\pi} \left[\frac{\pi^2}{3} + 2 \ln \frac{z_{13}^2}{z_{12}^2} \ln \frac{z_{23}^2}{z_{12}^2} \right] \right\} \\
\times \left[\text{Tr}\{T^a\hat{U}^\eta_{z_1} \hat{U}^\dagger_{z_3} T^a\hat{U}^\eta_{z_3} \hat{U}^\dagger_{z_2}\} - N_c \text{Tr}\{\hat{U}^\eta_{z_1} \hat{U}^\dagger_{z_2}\}\right]
\]

\[
- \frac{\alpha_s^2}{4\pi^4} \int \frac{d^2z_3 d^2z_4}{z_{34}^4} \frac{z_{12}^2}{z_{13}z_{24}} \frac{z_{12}^2}{z_{13}^2z_{24}^2} \left[1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{23}^2 z_{14}^2} \right] \ln \frac{z_{13}^2 z_{24}^2}{z_{14}^2 z_{23}^2} \times \text{Tr}\{[T^a, T^b]\hat{U}^\eta_{z_1} T^a' T^b' \hat{U}^\dagger_{z_2} + T^b T^a \hat{U}^\eta_{z_1} [T^{b'}, T^{a'}] \hat{U}^\dagger_{z_2}\}(\hat{U}^\eta_{z_3})^{aa'} (\hat{U}^\eta_{z_4} - \hat{U}^\eta_{z_3})^{bb'}
\]

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff $\alpha < \sigma = e^{2\eta}$ in the rapidity of Wilson lines.
Evolution equation for color dipoles in $N = 4$

(I. Balitsky and G.A.C. 2009)

$$\frac{d}{d\eta} \text{Tr}\{\hat{U}_1^\eta \hat{U}_2^\eta\}$$

$$= \frac{\alpha_s}{\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left\{ 1 - \frac{\alpha_s N_c}{4\pi} \left[\frac{\pi^2}{3} + 2 \ln \frac{z_{13}^2}{z_{12}^2} \ln \frac{z_{23}^2}{z_{22}^2} \right] \right\}$$

$$\times \left[\text{Tr}\{T^a \hat{U}_1^\eta \hat{U}_3^\eta T^a \hat{U}_3^\eta \hat{U}_2^\eta\} - N_c \text{Tr}\{\hat{U}_1^\eta \hat{U}_2^\eta\} \right]$$

$$- \frac{\alpha_s^2}{4\pi^4} \int d^2 z_3 d^2 z_4 \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2} \left[1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{23}^2 z_{14}^2} \right] \ln \frac{z_{13}^2 z_{24}^2}{z_{14}^2 z_{23}^2}$$

$$\times \text{Tr}\{[T^a, T^b] \hat{U}_1^\eta T^b T^a \hat{U}_2^\eta + T^b T^a \hat{U}_3^\eta [T^b', T^a'] \hat{U}_2^\eta\} (\hat{U}_3^\eta)^{aa'} (\hat{U}_4^\eta - \hat{U}_3^\eta)^{bb'}$$

NLO kernel = Non-conformal term + Conformal term.

Non-conformal term is due to the non-invariant cutoff $\alpha < \sigma = e^{2\eta}$ in the rapidity of Wilson lines.

For the conformal composite dipole the result is Möbius invariant.
Evolution equation for composite conformal dipoles in $\mathcal{N} = 4$ SYM

\[
[\text{Tr}\{\hat{U}_z^\eta \hat{U}_z^{\dagger \eta}\}]^{\text{conf}} = \text{Tr}\{\hat{U}_z^\eta \hat{U}_z^{\dagger \eta}\}
\]

\[+ \frac{\alpha_s}{4\pi} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[\frac{1}{N_c} \text{tr}\{\hat{U}_z^\eta \hat{U}_z^{\dagger \eta}\} \text{tr}\{\hat{U}_{z_3}^\eta \hat{U}_{z_2}^{\dagger \eta}\} - \text{Tr}\{\hat{U}_z^\eta \hat{U}_z^{\dagger \eta}\}\right] \ln \frac{az_{12}^2}{z_{13}^2 z_{23}^2} + O(\alpha_s^2)
\]

\[
\frac{d}{d\eta} [\text{Tr}\{\hat{U}_z^\eta \hat{U}_z^{\dagger \eta}\}]^{\text{conf}}
\]

\[= \frac{\alpha_s}{\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[1 - \frac{\alpha_s N_c \pi^2}{4\pi} \frac{1}{3} \right] \left[\text{Tr}\{T^a \hat{U}_z^\eta \hat{U}_z^{\dagger \eta} T^a \hat{U}_{z_3}^\eta \hat{U}_{z_2}^{\dagger \eta}\} - N_c \text{Tr}\{\hat{U}_z^\eta \hat{U}_z^{\dagger \eta}\}\right]^{\text{conf}}
\]

\[\quad - \frac{\alpha_s^2}{4\pi^4} \int d^2 z_3 d^2 z_4 \frac{z_{12}^2}{z_{13}^2 z_{23}^2 z_{24}^2 z_{34}^2} \left\{ 2 \ln \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 z_{23}^2} + \left[1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{14}^2 z_{23}^2} \right] \ln \frac{z_{13}^2 z_{24}^2}{z_{14}^2 z_{23}^2} \right\}
\]

\[\times \text{Tr}\{[T^a, T^b] \hat{U}_z^\eta T^{a'} T^{b'} \hat{U}_z^{\dagger \eta} + T^b T^a \hat{U}_z^\eta [T^{b'}, T^{a'}] \hat{U}_z^{\dagger \eta}\}((\hat{U}_z^\eta)^{aa'} (\hat{U}_z^{\eta})^{bb'} - (z_4 \rightarrow z_3))
\]

Now Möbius invariant!
To find $A(x, y; x', y')$ we need the linearized (NLO BFKL) equation. With two-gluon accuracy

$$\hat{U}^n(x, y) = 1 - \frac{1}{N_c^2 - 1} \text{Tr}\{\hat{U}_x^n \hat{U}_y^n\}$$

Conformal dipole operator in the BFKL approximation

$$\hat{U}_{\text{conf}}^n(z_1, z_2) = \hat{U}^n(z_1, z_2) + \frac{\alpha_s N_c}{4\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \ln \frac{az_{12}^2}{z_{13}^2 z_{23}^2} [\hat{U}^n(z_1, z_3) + \hat{U}^n(z_2, z_3) - \hat{U}^n(z_1, z_2)]$$
NLO BFKL equation in $\mathcal{N} = 4$ SYM

To find $A(x, y; x', y')$ we need the linearized (NLO BFKL) equation. With two-gluon accuracy

$$\hat{U}^\eta(x, y) = 1 - \frac{1}{N_c^2 - 1} \text{Tr}\{\hat{U}_x^\eta \hat{U}_y^{\dagger \eta}\}$$

Conformal dipole operator in the BFKL approximation

$$\hat{U}^\eta_{\text{conf}}(z_1, z_2) = \hat{U}^\eta(z_1, z_2) + \frac{\alpha_s N_c}{4\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{12}^2}{z_{13}^2 z_{23}^2} [\hat{U}^\eta(z_1, z_3) + \hat{U}^\eta(z_2, z_3) - \hat{U}^\eta(z_1, z_2)]$$

NLO BFKL

$$\frac{d}{d\eta} \hat{U}^\eta_{\text{conf}}(z_1, z_2)$$

$$= \frac{\alpha_s N_c}{2\pi^2} \int d^2 z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[1 - \frac{\alpha_s N_c}{4\pi^2} \frac{\pi^2}{3} \right] [\hat{U}^\eta_{\text{conf}}(z_1, z_3) + \hat{U}^\eta_{\text{conf}}(z_2, z_3) - \hat{U}^\eta_{\text{conf}}(z_1, z_2)]$$

$$+ \frac{\alpha_s^2 N_c^2}{8\pi^4} \int d^2 z_3 d^2 z_4 \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{23}^2 z_{14}^2 z_{24}^2} \left\{ 2 \ln \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{23}^2} + \left[1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 z_{14}^2 z_{23}^2} \right] \ln \frac{z_{13}^2 z_{24}^2}{z_{14}^2 z_{23}^2} \right\} \hat{U}^\eta_{\text{conf}}(z_3, z_4)$$

$$+ \frac{3\alpha_s^2 N_c^2}{2\pi^3} \zeta(3) \hat{U}^\eta_{\text{conf}}(z_1, z_2)$$

Eigenvalues agree with Kotikov and Lipatov (2000)
NLO evolution of composite “conformal” dipoles in QCD

\[
\frac{d}{d\eta} [\text{tr}\{\hat{U}_{z_1} U_{z_2}^\dagger\}]^{\text{conf}} = \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \left([\text{tr}\{\hat{U}_{z_1} \hat{U}_{z_3}^\dagger\} \text{tr}\{\hat{U}_{z_3} \hat{U}_{z_2}^\dagger\} - N_c \text{tr}\{\hat{U}_{z_1} \hat{U}_{z_2}^\dagger\}]^{\text{conf}} \times \frac{z_1^2}{z_2^2 z_3^2} \left[1 + \frac{\alpha_s N_c}{4\pi} \left(b \ln \frac{z_1^2}{\mu^2} + b \frac{z_1^2 - z_2^2}{z_2^2 z_3^2} \ln \frac{z_1^2}{z_2^2} + \frac{67}{9} - \frac{\pi^2}{3} \right) \right] \right)
\]

\[
+ \frac{\alpha_s}{4\pi^2} \int d^2 z_4 \frac{z_4^2}{z_3^4} \left\{ -2 + \frac{z_1^2 z_3^2 z_4^2}{2(z_1^2 z_3^2 - z_2^2 z_4^2)} \ln \frac{z_1^2 z_3^2}{z_2^2 z_4^2} \right\}
\]

\[
+ \frac{z_1^2 z_3^2 z_4^2}{z_2^2 z_1^2 z_4^2} \left[2 \ln \frac{z_1^2 z_3^2}{z_2^2 z_4^2} + \left(1 + \frac{z_2^2 z_4^2}{z_1^2 z_3^2} \right) \ln \frac{z_1^2 z_3^2}{z_4^2 z_2^2} \right]
\]

\[
\times \left\{ \text{tr}\{\hat{U}_{z_1} \hat{U}_{z_3}^\dagger\} \text{tr}\{\hat{U}_{z_3} \hat{U}_{z_4}^\dagger\} \text{tr}\{\hat{U}_{z_4} \hat{U}_{z_2}^\dagger\} - \text{tr}\{\hat{U}_{z_1} \hat{U}_{z_4}^\dagger \hat{U}_{z_3} \hat{U}_{z_2}^\dagger \hat{U}_{z_4} \hat{U}_{z_3}^\dagger\} - (z_4 \rightarrow z_3) \right\}
\]

\[
b = \frac{11}{3} N_c - \frac{2}{3} n_f
\]

\[
K_{\text{NLO BK}} = \text{Running coupling part} + \text{Conformal "non-analytic" (in j) part} + \text{Conformal analytic (N = 4) part}
\]

Linearized \(K_{\text{NLO BK}}\) reproduces the known result for the forward NLO BFKL kernel.
Small-x (Regge) limit in the coordinate space

\[(x - y)^4 (x' - y')^4 \langle \mathcal{O}(x) \mathcal{O}^\dagger(y) \mathcal{O}(x') \mathcal{O}^\dagger(y') \rangle\]

Regge limit: \(x_+ \rightarrow \rho x_+, \ x'_+ \rightarrow \rho x'_+, \ y_- \rightarrow \rho' y_-, \ y'_- \rightarrow \rho' y'_- \quad \rho, \rho' \rightarrow \infty\)

Regge limit symmetry in a conformal theory: 2-dim conformal Möbius group \(SL(2, \mathbb{C})\).
Small-x (Regge) limit in the coordinate space

\[(x - y)^4 (x' - y')^4 \langle \mathcal{O}(x) \mathcal{O}^\dagger(y) \mathcal{O}(x') \mathcal{O}^\dagger(y') \rangle\]

Regge limit: \(x_+ \to \rho x_+, x'_+ \to \rho x'_+, y_- \to \rho' y_-, y'_- \to \rho' y_-\) \(\rho, \rho' \to \infty\)

LLA: \(\alpha_s \ll 1, \alpha_s \ln \rho \sim 1, \Rightarrow \sum (\alpha_s \ln \rho)^n \equiv \text{BFKL pomeron.} \)
LLA \(\Leftrightarrow\) tree diagrams \(\Rightarrow\) the BFKL pomeron is Möbius invariant.

NLO LLA: extra \(\alpha_s:\sum \alpha_s (\alpha_s \ln \rho)^n \equiv \text{NLO BFKL}\)
In a conformal theory \((\mathcal{N} = 4 \text{ SYM})\) we expect NLO BFKL to be Möbius invariant.
Small-\(x\) (Regge) limit in the coordinate space

\[(x - y)^4(x' - y')^4 \langle \mathcal{O}(x)\mathcal{O}^\dagger(y)\mathcal{O}(x')\mathcal{O}^\dagger(y') \rangle\]

Regge limit: \(x_+ \to \rho x_+, x'_+ \to \rho x'_+, y_- \to \rho' y_-, y'_- \to \rho' y_-\) \(\rho, \rho' \to \infty\)

LLA: \(\alpha_s \ll 1, \alpha_s \ln \rho \sim 1, \Rightarrow \sum (\alpha_s \ln \rho)^n \equiv \text{BFKL pomeron.} \)

LLA ⇔ tree diagrams ⇒ the BFKL pomeron is Möbius invariant.

NLO LLA: extra \(\alpha_s\): \(\sum \alpha_s (\alpha_s \ln \rho)^n \equiv \text{NLO BFKL}\)

In a conformal theory (\(\mathcal{N} = 4\) SYM) we expect NLO BFKL to be Möbius invariant.

In QCD, we have running coupling part plus conformal part.
In a conformal theory the amplitude \(A(x, y; x', y') \) depends on two conformal ratios which can be chosen as

\[
R = \frac{(x - x')(y - y')^2}{(x - y)^2(x' - y')^2},
\]

\[
r = R \left[1 - \frac{(x - y')^2(y - x')^2}{(x - x')^2(y - y')^2 + \frac{1}{R}} \right]^2.
\]

In the Regge limit \(R \) scales as \(\rho^2 \rho'^2 \) while \(r \) does not depend on \(\rho \) or \(\rho' \).
In a conformal theory the amplitude $A(x, y; x', y')$ depends on two conformal ratios which can be chosen as

$$R = \frac{(x - x')(y - y')^2}{(x - y)^2(x' - y')^2}.$$

$$r = R \left[1 - \frac{(x - y')^2(y - x')^2}{(x - x')^2(y - y')^2} + \frac{1}{R} \right]^2$$

In the Regge limit R scales as $\rho^2\rho'^2$ while r does not depend on ρ or ρ'.

G. A. Chirilli (LPT d'Orsay & CPHT)
High-energy evolution in gauge theories
LPT March 04, 2010
The pomeron contribution in a conformal theory can be represented as an integral over one real variable ν

\[
(x - y)^4 (x' - y')^4 \langle \mathcal{O}(x) \mathcal{O}^\dagger(y) \mathcal{O}(x') \mathcal{O}^\dagger(y') \rangle = \frac{i}{2} \int d\nu \tilde{f}_+(\nu) \frac{\tanh \pi \nu}{\nu} F(\nu) \Omega(r, \nu) R^{\frac{1}{2}} \omega(\nu)
\]

$\omega(\nu) \equiv \omega(0, \nu)$ is the pomeron intercept,

$\tilde{f}_+(\omega) = (e^{i\pi \omega} - 1)/\sin \pi \omega$ is the signature factor in the coordinate space.

$F(\nu)$ is the “pomeron residue”.

The conformal function $\Omega(r, \nu)$ is given by a representation in terms of the two-dimensional integral

\[
\Omega(r, \nu) = \frac{\nu^2}{\pi^3} \int d^2z \left(\frac{\kappa^2}{(2\kappa \cdot \zeta)^2} \right)^{\frac{1}{2}+i\nu} \left(\frac{\kappa'^2}{(2\kappa' \cdot \zeta)^2} \right)^{\frac{1}{2}-i\nu}
\]

where $\zeta \equiv p_1 + \frac{z_\perp}{s} p_2 + z_\perp$
Operator expansion in conformal dipoles in $\mathcal{N} = 4$ SYM

$$\mathcal{O} \equiv \frac{4\pi^2\sqrt{2}}{\sqrt{N_c^2 - 1}} \text{Tr}\{Z^2\} \quad (Z = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)) \text{ renorm-invariant chiral primary operator}$$

$$(x - y)^4 T\{\hat{O}(x)\hat{O}^\dagger(y)\} = \frac{(x - y)^4}{\pi^2(N_c^2 - 1)} \int d^2z_1 d^2z_2 \frac{\left(x_\ast y_\ast\right)^{-2}}{Z_1^2 Z_2^2} \text{Tr}\{\hat{U}_1^\eta \hat{U}^\dagger_2^\eta\}\text{conf}$$

$$- \frac{\alpha_s (x - y)^4}{2\pi^4(N_c^2 - 1)} \int d^2z_1 d^2z_2 d^2z_3 \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \frac{\left(x_\ast y_\ast\right)^{-2}}{Z_1^2 Z_2^2}$$

$$\times \left(\ln \frac{x_\ast y_\ast z_{12}^2 e^{2\eta}}{16(x - y)^2 z_{13}^2 z_{23}^2} \left[\frac{(x - z_3)^2}{x_\ast} - \frac{(y - z_3)^2}{y_\ast} \right]^2 - i\pi + 2C \right)$$

$$\times \left[\text{Tr}\{T^n \hat{U}_1^\eta \hat{U}^\dagger_3^\eta T^n \hat{U}_3^\eta \hat{U}^\dagger_2^\eta\} - N_c \text{Tr}\{\hat{U}_1^\eta \hat{U}^\dagger_2^\eta\} \right]$$

The impact factor is Möbius invariant and does not scale with the energy.
\[(x - y)^4(x' - y')^4 \langle T\{\hat{O}(x)\hat{O}(y)^\dagger \hat{O}(x')\hat{O}^\dagger(y')\}\rangle \]
\[= -\frac{1}{\pi^4} \int d\nu \int d^2z_0 \frac{1 + 4\nu^2}{8\pi} \frac{\Gamma^2(\frac{1}{2} - i\nu)}{\Gamma(1 - 2i\nu)} \left(\frac{\kappa^2}{4(\kappa \cdot \zeta_0)^2}\right)^{\frac{1}{2} + i\nu} \]
\[\times \frac{(-a_0 b_0 + i\epsilon)^{\frac{1}{2}\omega(\nu)} - (a_0 b_0 + i\epsilon)^{\frac{1}{2}\omega(\nu)}}{\pi \omega} I_0(\nu) \left[1 - \frac{\alpha_s N_c}{4\pi} \Phi_1(\nu)\right] \]
\[\times \frac{1 + 4\nu^2}{8\pi} \frac{\Gamma^2(\frac{1}{2} + i\nu)}{\Gamma(1 + 2i\nu)} \left(\frac{\kappa'^2}{4(\kappa' \cdot \zeta'_0)^2}\right)^{\frac{1}{2} - i\nu} I_0(\nu) \left[1 - \frac{\alpha_s N_c}{4\pi} \Phi_1(\nu)\right] \]
\[\times \left[1 - \frac{\alpha_s N_c}{2\pi} \left(\chi(\gamma) \left\{4C + \frac{2}{\gamma(1 - \gamma)}\right\} + \frac{\pi^2}{3}\right)\right] \]

\[F(\nu) = \frac{N_c^2}{N_c^2 - 1} \frac{16\pi^4 \alpha_s^2}{\cosh^2 \pi \nu} \left[1 - \frac{\alpha_s N_c}{4\pi} \Phi_1(\nu)\right] \left[1 - \frac{\alpha_s N_c}{4\pi} \Phi_1(\nu)\right] \]
\[\left[1 - \frac{\alpha_s N_c}{2\pi} \left(\chi(\gamma) \left\{4C + \frac{2}{\gamma(1 - \gamma)}\right\} + \frac{\pi^2}{3}\right)\right] + O(\alpha_s^2) \]

which gives the pomeron residue in the next-to-leading order.
Conclusions

- High-energy operator expansion in color dipoles works at the NLO level.
- The NLO BK kernel in QCD and $\mathcal{N} = 4$ SYM agrees with NLO BFKL eigenvalues.
- The NLO BK kernel for the evolution of conformal composite dipoles in $\mathcal{N} = 4$ SYM is Möbius invariant in the transverse plane.
- The NLO BK kernel in QCD is a sum of the running-coupling part and conformal part.
- The NLO Amplitude in $\mathcal{N} = 4$ is given an integral over a real parameter ν.
Outlook

- NLO Photon Impact Factor in QCD.
- NLO amplitude of $\gamma^* \gamma^*$ scattering (QCD).
- 3-pomeron vertex in the Wilson line formalism.
- Odderon in the Wilson line formalism.
- NLO kernel for the B-JIMWLK equation.